Memorandum

Date:	November 18, 2024
	Chris Yeager, Senior Planner
From:	Peter Carlson, Carlson Strategic Land Solutions
Subject:	960 W. 16 th Street Live/Work Project CEQA Exemption

Intracorp proposes constructing 38 Live/Work units on approximately 2.35 acres within the City of Costa Mesa located at 960 W. 16th Street. The project site is currently developed with an approximately 56,127 square foot unoccupied industrial/office building and associated surface parking. The proposed Project would demolish the existing building and parking area, and construct 38 new single family residential units with approximately 11,609 square feet of attached live/work office space. The Project site is considered infill, surrounded by existing residential and commercial development and served by existing utilities. Surrounding land uses include residential uses to the north, industrial uses to the east, Newport Beach utilities facility to the south across W. 16th Street, and Hampton Drive and residential uses to the west.

The Project site has a General Plan designation of Light Industrial with the Mesa West Bluffs Urban Plan mixed-use overlay and is zoned General Industrial with a Mesa West Bluffs Urban Plan Overlay. The Mesa West Bluffs Urban Plan permits Live/Work units at 15-20 units per acre. The proposed 38 units represent a density of approximately 16.2 du/ac.

Project Design Features

Project Design Features (PDFs) are attributes of a project designed to avoid or minimize environmental impacts. The PDFs are part of the project description and commitments made by the project Applicant. The following PDFs have been incorporated into the proposed Project.

DF-1 The project will follow the SCAQMD rules and requirements for fugitive dust control, which include, but are not limited to the following:

1. All active construction areas shall be watered two (2) times daily.

2. Any visible deposition on any public roadway shall be swept or washed at the site access points within 30 minutes.

3. Any on-site stockpiles of debris, dirt or other dusty material shall be covered or watered twice daily.

- 4. All operations on any unpaved surface shall be suspended if winds exceed 15 mph.
- 5. Access points shall be washed or swept daily.
- 6. Construction sites shall be sandbagged for erosion control.

7. Apply nontoxic chemical soil stabilizers according to manufacturers' specifications to all inactive construction areas (previously graded areas inactive for 10 days or more).

8. Cover all trucks hauling dirt, sand, soil, or other loose materials, and maintain at least 2 feet of freeboard space in accordance with the requirements of California Vehicle Code (CVC) section 23114.

9. Use gravel aprons at truck exits.

10. Replace the ground cover of disturbed areas as quickly possible.

- DF-2 Construction equipment shall be maintained in proper tune.
- **DF-3** All construction vehicles shall be prohibited from excessive idling. Excessive idling is defined as five (5) minutes or longer.
- **DF-4** Minimize the simultaneous operation of multiple construction equipment units, to the maximum extent feasible.
- **DF-5** The use of heavy construction equipment and earthmoving activity shall be suspended during Air Alerts when the Air Quality Index reaches the "Unhealthy" level.
- **DF-6** Establish an electricity supply to the construction site and use electric-powered equipment instead of diesel-powered equipment or generators, where feasible.
- **DF-7** Establish staging areas for the construction equipment that are as distant as possible from adjacent residential homes.
- **DF-8** Utilize zero VOC and low VOC paints and solvents, where feasible.
- **DF-9** The project will comply with the mandatory requirements of the California Building Standards Code, Title 24, Part 6 (Energy Code) and Part 11 (CALGreen), including, but not limited to:

1. Install low flow fixtures and toilets, water efficient irrigation systems, drought tolerant/native landscaping, and reduce the amount of turf.

2. Provide the necessary infrastructure to support electric vehicle charging.

3. Provide solar installations/solar readiness zones per the prescribed Energy Design Ratings.

- **DF-10** The project will participate in local waste management recycling and composting programs.
- DF-11 A liquid boot vapor barrier shall be installed under all live/work units.

CEQA Compliance

The California Environmental Quality Act (CEQA) has determined that small infill projects are exempt from further CEQA review. The CEQA Guidelines Section 15354 defines a Categorical Exemption as:

"Categorical exemption" means an exemption from CEQA for a class of projects based on a finding by the Secretary for Resources that the class of projects does not have a significant effect on the environment.

The proposed Project consists of the construction of 38 Live/Work units. Attachment A is the proposed site plan. The construction of the 38 Live/Work units on 2.35 acres falls within the umbrella established by CEQA Guidelines Section 15332, Class 32 Categorical Exemption.

15332. IN-FILL DEVELOPMENT PROJECTS

Class 32 consists of projects characterized as in-fill development meeting the conditions described in this section.

(a) The project is consistent with the applicable general plan designation and all applicable general plan policies as well as with applicable zoning designation and regulations.

(b) The proposed development occurs within city limits on a project site of no more than five acres substantially surrounded by urban uses.

(c) The project site has no value as habitat for endangered, rare or threatened species.

(d) Approval of the project would not result in any significant effects relating to traffic, noise, air quality, or water quality.

(e) The site can be adequately served by all required utilities and public services.

Note: Authority cited: Section 21083, Public Resources Code. Reference: Section 21084, Public Resources Code.

<u>Rationale:</u>

To qualify for the Class 32 Infill Exemption, a project must meet the five requirements in the statute. In the case of the proposed Project, all five requirements are met, as follows:

 <u>General Plan and Zoning Consistency</u>. The proposed Project is consistent with the General Plan designation and zoning. The Project site has a General Plan designation of Light Industrial with the Mesa West Bluffs Urban Plan mixed-use overlay and is zoned General Industrial with a Mesa West Bluffs Urban Plan Overlay. The Mesa West Bluffs Urban Plan permits Live/Work units at 15-20 units per acre. The proposed 38 live/work units represent a density of approximately 16.2 du/ac.

The proposal is consistent with the General Plan policies pertaining to infill Live/Work development as well as the development standards.

- <u>City limits and less than 5 acres</u>. The Project site is located within the incorporated boundaries of the City of Costa Mesa and at 2.35 acres is less than the 5-acre requirement. The Project site is surrounded by urban uses, including residential uses to the north, industrial uses to the east, Newport Beach utilities facility to the south across W. 16th Street, and Hampton Drive and residential uses to the west.
- 3. <u>Endangered Species</u>. The Project site does not have any biological resources to support rare, threatened, or endangered species. The Project site is void of native habitat. With the exception of a small strip of ornamental landscaping along the Project site frontage, the Project site is completely developed industrial/office property with a paved surface parking lot. Given the surrounding land uses, the Project site does not provide a corridor for wildlife movement. Therefore, the Project site does not provide valuable biological resources.
- 4. <u>Traffic, Noise, AQ, and Water Quality</u>. The Project would not cause significant impacts to traffic, noise, air quality, or water quality as discussed below.

Traffic. Pursuant to Senate Bill 743 (SB 743) the number of vehicle miles travelled (VMT) is now used as the metric under CEQA to determine traffic impacts of a proposed project. Linscott, Law & Greenspan, Engineers prepared the memo, *Vehicle Miles Traveled (VMT) Screening Assessment for the Proposed 960 W. 16th Street Residential Project, Costa Mesa, CA* dated November 15, 2024, and included as Attachment B. As documented in the VMT memo, the proposed Project has been determined to have no VMT impact because the Project qualifies for the following two screening criteria: 1) located within a Transit Priority Area; and 2) located within a low VMT impact.

Noise. Construction and operations create two potential noise sources. Construction operation includes the demolition of existing structures, grading and site preparation of the Project site, and vertical construction of the live/work units. Construction is a temporary impact and governed by the City's municipal code for permitted construction hours. Construction of the site would follow typical construction methods. No blasting or pile driving would occur. All demolished materials would be hauled off the Project site to a suitable landfill. Minimal grading of the Project site is necessary, with approximately five feet of overexcavation and recompaction to create suitable materials for construction. Vertical construction would be typical wood-frame construction and not generate excessive noise. Therefore, the proposed Project would not cause excessive noise generation and would comply with the City's noise ordinance, which limits construction hours.

Operational noise would occur from new traffic generated by the proposed Project. As documented in the VMT study (Attachment B), the proposed Project would generate less than 50 peak hour trips, which is less than the City's threshold for conducting a traffic study. During the AM and PM peak hours, the Project would generate 40 and 47 trips respectively. The minimal amount of traffic added to the transportation network would

not result in an audible increase in operational traffic noise. Therefore, the proposed Project would not create a significant noise impact.

Air Quality. The Project would not cause significant Air Quality impacts during construction or operation of the Project. Below are several tables summarizing potential air quality impacts against thresholds established by the South Coast Air Quality Management District (SCAQMD). This analysis is presented in the report, 16th Street Residential Project Air Quality and Greenhouse Gas Analysis, City of Costa Mesa, prepared by RK Engineering Group, dated November 8, 2024, and included in Attachment C.

Activity	Maximum Daily Emissions (lbs./day)¹					
	voc	NO _x	со	SO2	PM10	PM _{2.5}
Demolition	2.49	24.98	21.82	0.05	3.41	1.33
Site Preparation	3.37	31.71	31.16	0.05	9.26	5.25
Grading	1.80	16.45	18.81	0.03	3.71	2.05
Building Construction	1.12	10.04	13.75	0.02	0.59	0.40
Paving	0.86	6.30	9.87	0.01	0.52	0.30
Architectural Coating	19.97	0.87	1.26	0.00	0.06	0.03
Maximum ¹	19.97	31.71	31.16	0.05	9.26	5.25
SCAQMD Threshold	75	100	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Table 1 - Maximum Daily Emissions (lbs/day)

¹Maximum daily emissions during summer or winter; includes both onsite and offsite project emissions.

Table 2 - Localized Construction Emissions (lbs/day)

Activity	Maximum Daily Emissions (Ibs./day) ¹			
	NOx	со	PM ₁₀	PM _{2.5}
Onsite Emissions	31.64	30.18	9.03	5.20
SCAQMD Localized Threshold ²	161.1	1,325.2	10.6	6.9
Exceeds Threshold?	No	No	No	No

¹Maximum daily emissions during summer or winter; includes both onsite and offsite project emissions.

² Source: SCAQMD Mass Rate Localized Significance Thresholds for 3.5 acres/day in SRA-18 at 25 meters.

Activity	Maximum Daily Emissions (lbs./day) ¹					
	voc	NOx	со	SO2	PM10	PM _{2.5}
Mobile Sources	1.16	0.89	10.39	0.03	2.45	0.63
Area Sources	1.95	0.65	2.42	0.00	0.05	0.05
Energy Sources	0.02	0.37	0.16	0.00	0.03	0.03
Total	3.13	1.91	12.97	0.03	2.53	0.71
SCAQMD Threshold	55	55	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Table 3 - Regiona	Operational	Emissions	(lbs/day)
Table 5 - Regiona	i Operational	LIIISSIOIIS	(IDS/Udy)

¹Maximum daily emissions during summer or winter; includes both onsite and offsite project emissions.

Table 4 - Localized Operational Emissions (lbs/day)

Activity	Maximum Daily Emissions (lbs./day) ¹			
	NOx	со	PM10	PM _{2.5}
Onsite Emissions	2.03	3.10	0.20	0.11
SCAQMD Localized Threshold ²	161.1	1,325.2	2.9	1.8
Exceeds Threshold?	No	No	No	No

¹ Maximum daily emissions during summer or winter.

² Source: SCAQMD Mass Rate Localized Significance Thresholds for 3.5 acres/day in SRA-18 at 25 meters.

Greenhouse gas emissions. The Project would not cause a significant Greenhouse Gas impact. Below are several tables summarizing potential GHG impacts against thresholds established by the South Coast Air Quality Management District (SCAQMD).

Activity		Emissions (MTCO₂e)¹	
	Onsite	Offsite	Total
Demolition	70.15	50.33	120.48
Site Preparation	74.72	3.19	77.91
Grading	66.00	6.79	72.79
Building Construction	190.94	24.39	215.33
Paving	14.75	2.77	17.52
Architectural Coating	1.46	0.38	1.84
Total	418.01	87.85	505.87
Amortized Over 30 Years ²	13.93	2.93	16.86

Table 5 - Construction Greenhouse Gas Emissions (MTCO2e)

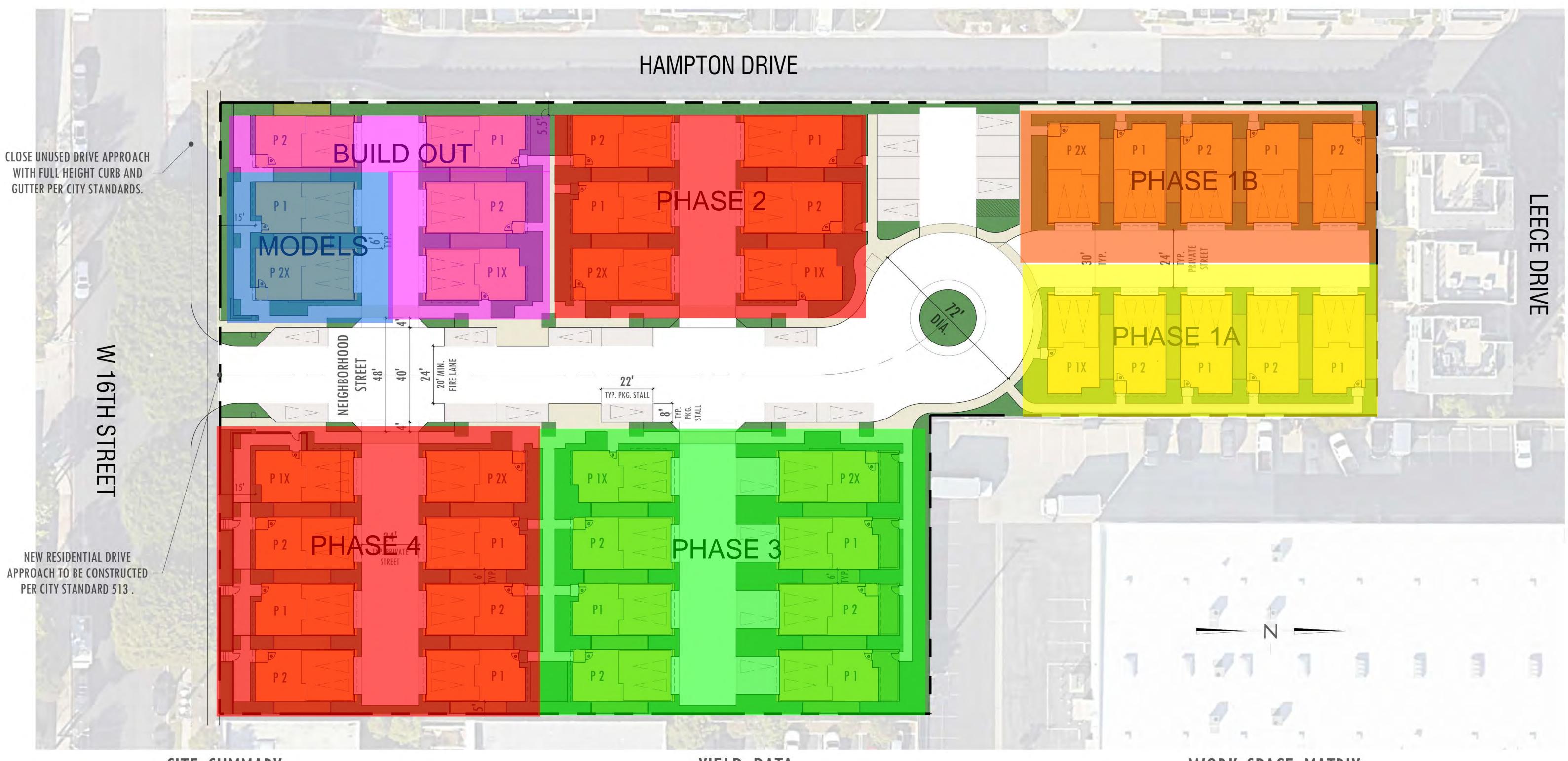
¹ MTCO₂e = metric tons of carbon dioxide equivalents (includes carbon dioxide, methane, nitrous oxide, and/or hydrofluorocarbons).

²The emissions are amortized over 30 years and added to the operational emissions, pursuant to SCAQMD recommendations.

Emission Source	Unmitigated GHG Emissions (MTCO2e/yr.) ¹
Mobile Sources	414.26
Area Sources	9.74
Energy Sources	150.45
Water	4.65
Waste	9.36
Refrigerant	0.09
Construction (30-Year Amortization)	16.86
Total Annual Emissions	605.41
SCAQMD Tier 3 Screening Threshold	3,000
Exceeds Threshold?	No

Table 6 - Operational Greenhouse Gas Emissions (MTCO2e)

¹MTCO₂e/yr. = metric tons of carbon dioxide equivalents per year.


Water Quality. The Project site is nearly all impervious surface except for a small strip of landscaping along the frontage of W. 16th Street. Therefore, storm runoff leaves the project site and is collected by a storm drain system within W. 16th Street. The proposed Project will increase the amount of pervious surface, thereby reducing the amount of storm runoff. Therefore, no storm detention is required. To provide water quality treatment of storm runoff, the proposed Project will treat the initial storm runoff through a modular wetland system or similar water quality BMP, ensuring compliance with the MS4 requirements, prior to discharge into the existing storm drainage system in W. 16th Street. Therefore, the Project would not cause any water quality or hydrology impacts.

5. <u>Public Utilities and Services</u>. The Project site is served by existing public utilities in W. 16th Street. Access to the site is provided from existing W. 16th Street and accessible to both police and fire. The Project site is located in an urbanized area and not within a High Fire Hazard Zone.

Therefore, for the reasons stated above, the proposed Project is consistent with the Class 32 Categorical Exemption pursuant to CEQA Guidelines §15332.

Please contact me at pcarlson@carlsonsls.com or 949.289.3625, should you have any questions or comments.

Attachment A

SITE SUMMARY

STE AREA ACREAGE	100,188 S.F. 2.3 ACRES
TOTAL UNITS	38 UNITS
TOTAL AREA	85,645 S.F.
F.A.R.	0.85
NET DENSITY	24.8 \ DUA

960 W 16TH STREET COSTA MESA, CALIFORNIA PROJECT# 137-24127

ATELIER

YIELD DATA

SMALL LOT - SINGLE-FAMILY DETACHED

UNIT TYPE	YIELD	SQ. FT.	SQ.FT. YIELD
PLAN 1 (3 BED/2.5.5 BA/2 CAR)	14	2,173 S.F.	30,422 S.F.
PLAN 1X (END UNIT)	5	2,173 S.F.	10,865 S.F.
PLAN 2 (3 BED/2.5.5 BA/2 CAR)	14	2,329 S.F.	32,606 S.F.
PLAN 2X (END UNIT)	5	2,329 S.F.	11,645 S.F.
TOTAL	38	2,250 S.F. AVG.	85,538 S.F.

INTRACORP

SCHEMATIC DESIGN OCTOBER 16TH, 2024

SCAL	E: 1" = 20'-0)"
0	20'	40'

WORK SPACE MATRIX

TOTAL	38	305 S.F. AVG.	11 <i>,</i> 609 S.F.
PLAN 2X WORK SPACE	5	304 S.F. (NET)	1,520 S.F.
PLAN 2 WORK SPACE	14	304 S.F. (NET)	4,256 S.F.
PLAN 1X WORK SPACE	5	307 S.F. (NET)	1,535 S.F.
PLAN 1 WORK SPACE	14	307 S.F. (NET)	4,298 S.F.
UNIT TYPE	YIELD	SQ. FT.	SQ.FT. YIELD

© 2024 SDK ATELIER INC

SITE PLAN

80'

Attachment B

TECHNICAL MEMORANDUM

To:	Rick Puffer	Date:	November 15, 2024
	Intracorp SW, LLC		
From:	Richard E. Barretto, P.E., Principal Linscott, Law and Greenspan, Engineers	LLG Ref:	2.24.4823.1
Subject:	Vehicle Miles Traveled (VMT) Screening As	v	

Proposed 960 W. 16th Street Residential Project, Costa Mesa, CA

As requested, Linscott, Law & Greenspan, Engineers (LLG) is pleased to submit this Vehicle Miles Traveled (VMT) Screening Assessment Memorandum for the proposed 960 W. 16th Street Residential Project (hereinafter referred to as Project) in the City of Costa Mesa, California. This Screening Memorandum presents the VMT screening criteria, assessment methodology, and conclusion. The approach and methodology outlined in this Screening Memorandum is consistent with the *City of Costa Mesa Traffic Impact Analysis (TIA) Guidelines (dated October 2020)*, which provides additional detail on the language and analysis procedures described in this Screening Memorandum.

The following sections of this Technical Memorandum summarize the Project description, present City of Costa Mesa's VMT screening criteria, assessment methodology, and conclusion.

PROJECT DESCRIPTION

The Project site is a 2.35-acre parcel of land that is currently development with a 56,127 SF warehousing/office/manufacturing building inclusive of 7,230 SF of mezzanine. Access to the subject property is currently provided via a full access unsignalized driveway located along W. 16th Street. *Figure 1*, located at the rear of this letter report, presents a Vicinity Map, which illustrates the general location of the project and the surrounding street system. *Figure 2* presents the existing site aerial.

The proposed Project includes the construction of 38 single family detached residential homes with 11,609 SF of attached live/work offices space. Access is proposed via a full access unsignalized driveway located along W. 16th Street. The project site currently has two potential design options, but both options result in the same driveway access location and same number of units. Parking for the Project would be provided via 76 garage spaces and between seven (7) and seventeen (17) on-site surface parking spaces, depending on the design option. *Figure 3A* and *3B* presents the two proposed Project site plan options prepared by SDK|Atelier dated April 1, 2024.

David S. Shender, PE John A. Boarman, PE Richard E. Barretto, PE Keil D. Maberry, PE KC Yellapu, PE Dave Roseman, PE Shankar Ramakrishnan, PE An LG2WB Company Founded 1966

2 Executive Circle Suite 250 Irvine, CA 92614 949.825.6175 T 949.825.5939 F www.llgengineers.com

Pasadena Irvine San Diego

PROJECT SCREENING CRITERIA

Project screening is used to determine if a project will be required to conduct a detailed VMT analysis. The following section discusses the various screening methods outlined in the *City of Costa Mesa Traffic Impact Analysis (TIA) Guidelines (dated October 2020)*, and outlines whether the Project will screen-out, either in its entirety or partially, based on individual land uses.

The *City of Costa Mesa Traffic Impact Analysis (TIA) Guidelines (dated October 2020)* states that three types of screening that can be applied to screen projects from project-level assessment. These screening steps are summarized below:

Step 1: Transit Priority Area (TPA) Screening

The City of Costa Mesa Traffic Impact Analysis (TIA) Guidelines (dated October 2020) states:

"Projects located within a TPA¹ may be presumed to have a less than significant impact absent substantial evidence to the contrary. This presumption may NOT be appropriate if the project:

1. Has a Floor Area Ratio (FAR) of less than 0.75;

Proposed Project FAR is 0.95.

2. Includes more parking for use by residents, customers, or employees of the project than required by the jurisdiction;

Proposed Project is providing 83 to 93 parking spaces depending on the proposed site plan option 1 vs option 2 and City of Costa Mesa Parking Code requirement is 190 parking spaces.

3. Is inconsistent with the applicable Sustainable Communities Strategy (as determined by the lead agency, with input from the Southern California Association of Governments [SCAG]); or

This secondary screening step includes verification of the proposed project's consistency with the assumptions from the Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS).

¹¹ A TPA is defined as a ¹/₂ mile area around an existing major transit stop or an existing stop along a high-quality transit corridor per the definitions below:

Pub. Resources Code, § 21064.3 - 'Major transit stop' means a site containing an existing rail transit station, a ferry terminal served by either a bus or rail transit service, or the intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during the morning and afternoon peak commute periods.

Pub. Resources Code, § 21155 - For purposes of this section, a 'high-quality transit corridor' means a corridor with
fixed route bus service with service intervals no longer than 15 minutes during peak commute hours.

This consistency can be a land use review (e.g., are the proposed land uses already included in the RTP/SCS) or can be reviewed from a VMT/SP perspective (e.g., does the resulting land use increase or decrease the VMT/SP in the Traffic Analysis Zone (TAZ) compared to the RTP/SCS assumptions).

The Project is located within the Industrial designation area of the Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS) Maps as contained in Southern California Association of Governments' (SCAG) adopted Connect SoCal 2024 (dated May 2022) and may not be consistent with the land uses in the RTP/SCS, which assumed the site would be constructed as an Industrial use.

However, this can be reviewed from a VMT/SP perspective (e.g., does the resulting land use increase or decrease the VMT/SP in the Traffic Analysis Zone (TAZ) compared to the RTP/SCS assumptions). As is expected, replacing an Industrial use with a Residential use would result in integrating the zone into a Mixed-Used Land Use, as an urban, residential development that would reduce area VMT, consistent with the TPA designation. Connect SoCal recognizes that development within Priority Growth Areas, including TPAs, supports mode shift and shortened trip distances.

In addition, the Project's consistency has been evaluated with applicable goals, Objectives, and policies of the City of Costa Mesa General Plan sections of the Land Use and Conservation Elements, including:

- Policy LU-4.6: Incorporate the principles of sustainability into land use planning, infrastructure, and development processes to reduce greenhouse gas emissions consistent with State goals.
- Policy CON-2.A.1: Promote efficient use of energy and conservation of available resources in the design, construction, maintenance, and operation of public and private facilities, infrastructure, and equipment.
- Policy CON-2.A.5: Promote environmentally sustainable development principles for buildings, neighborhoods, and infrastructure.
- Policy CON-4.A.1 Support regional policies and efforts that improve air quality to protect human and environmental health,

and minimize disproportionate impacts on sensitive population groups.

Furthermore, SCAG's Connect SoCal 2024 RTP/SCS integrates strategies for land use and transportation centered around sustainability, protecting and preserving existing transportation infrastructure, increasing capacity through improved systems managements, and providing more transportation choices, in order to help reduce greenhouse gas (GHG) emissions from transportation. The City's General Plan consistency, and thus the Project's consistency, with the RTP/SCS can be evaluated based on the following applicable objectives:

- Objective LU-4A: Encourage new development and redevelopment that protects and improves the quality of Costa Mesa's natural environment and resources.
- 4. Replaces affordable residential units with a smaller number of moderate- or high- income residential units."

Based on the above, two bus routes operate within the half-mile circle of the Project Site. *OCTA Bus Route 47* and *OCTA Bus Route 55* operate with a frequency of service interval of between 12 minutes and 26 minutes during the morning and afternoon peak commute periods², along Placentia Avenue as shown below:

Screenshot 1. TPA Screening

² Per SCAG's Connect SoCal 2024 Mobility Technical Report the morning peak is defined as 6 AM to 9 AM and the afternoon peak is defined as 3 PM to 7 PM. Therefore, the average headway is calculated by taking 420 minutes divided by the total number of bus trips at each bus stop in a ½ mile radius during those 7 hours. If the headway is less than 15 minutes, then the bus stop is considered a high-quality transit corridor.

Based on the above the proposed Project <u>will</u> screen out under the TPA Screening criteria since it is within the TPA area.

Step 2: Low VMT Area Screening

The second screening methodology is provided for residential and office land-use projects. The *City of Costa Mesa Traffic Impact Analysis (TIA) Guidelines (dated October 2020) states:*

"Residential and office projects located within a low VMT-generating area may be presumed to have a less than significant impact absent substantial evidence to the contrary. In addition, other employment-related and mixeduse land use projects may qualify for the use of screening if the project can reasonably be expected to generate VMT per service population that is similar to the existing land uses in the low VMT-area."

Based on Screenshot 1, the proposed Project <u>will</u> screen out under the Low VMT Area Screening criteria since the Project site is located within a Low VMT Area.

Step 3: Project Type Screening

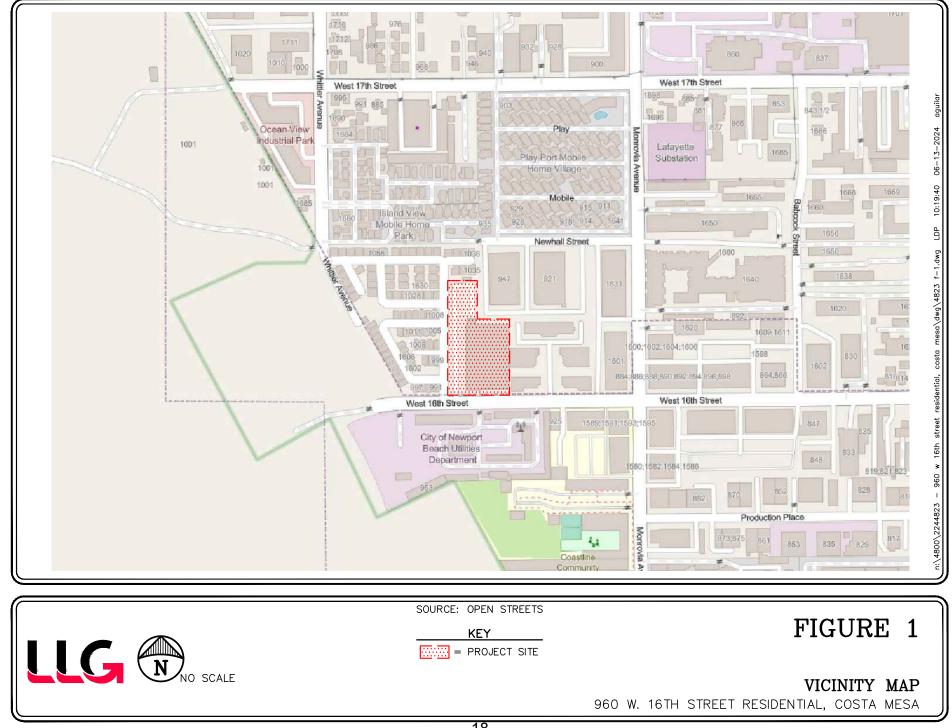
The third screening methodology is for the type of project. The *City of Costa Mesa Traffic Impact Analysis (TIA) Guidelines (dated October 2020) states:*

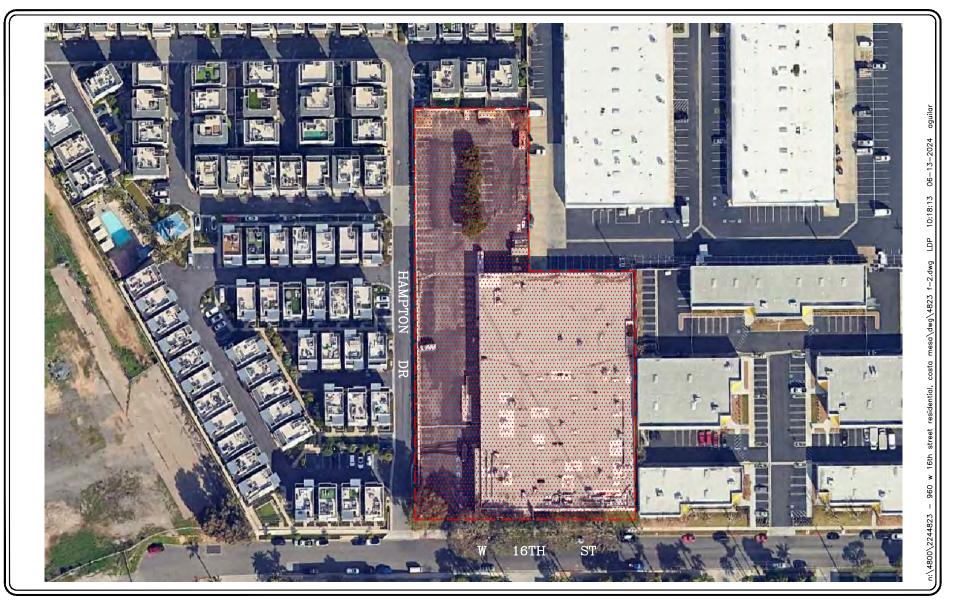
"Some project types have been identified as having the presumption of a less than significant impact. The following uses can be presumed to have a less than significant impact absent substantial evidence to the contrary as their uses are local serving in nature:

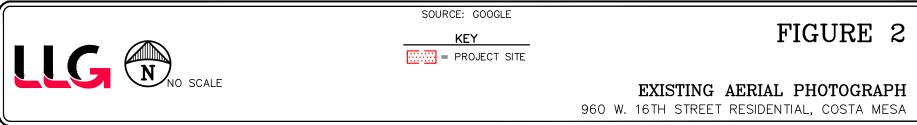
- Local-serving K-12 public schools
- Local parks
- Day care centers
- Local-serving retail uses less than 50,000 square feet, including:
 - o Gas stations
 - o Banks
 - o Restaurants
 - Shopping Center
- Student housing projects or adjacent to college campuses
- Local-serving assembly uses (places of worship, community organizations)
- Community institutions (public libraries, fire stations, local government)
- Assisted living facilities

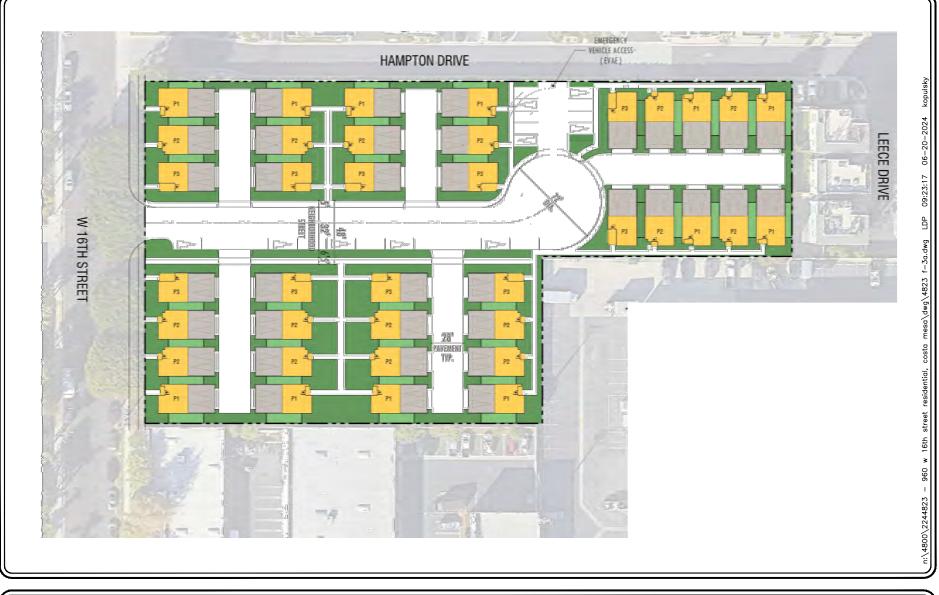
- Senior housing (as defined by HUD)
- Projects generating less than 110 daily vehicle trip⁴
 - To confirm whether a Project generates 110 daily trips or less, the analyst should consult with City staff

Based on the above, the proposed Project <u>will not</u> screen out under the Project Type Screening criteria since the Project is forecast to generate 173 net new daily trips (Proposed vs. Existing/Entitled), which is higher than the threshold of 110 daily trips (see the last row of **Table 1 – Project Traffic Generation Rates and Forecast**, attached).

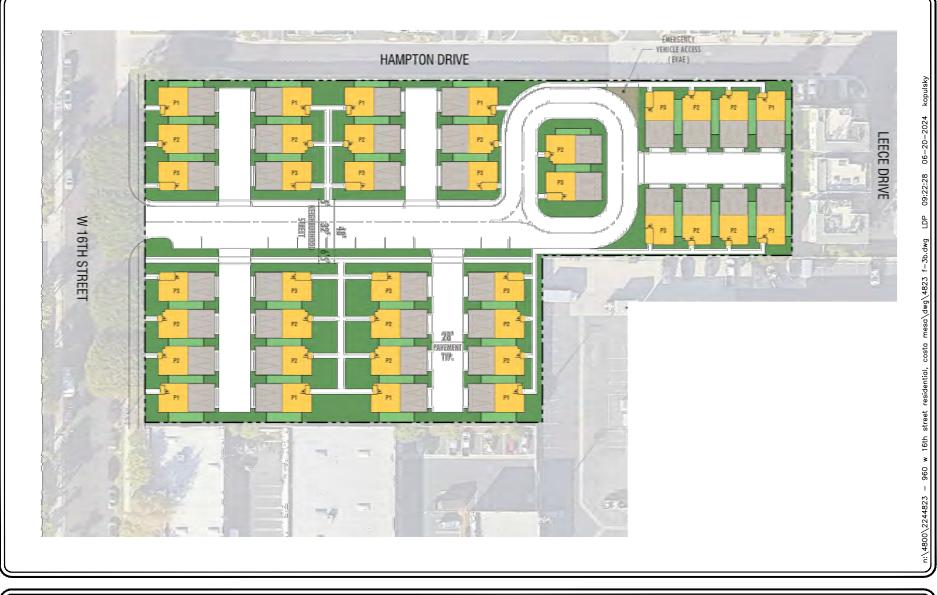

CONCLUSION


Consistent with the *City of Costa Mesa Traffic Impact Analysis (TIA) Guidelines (dated October 2020)* and based on the VMT screening methodology, the Project meets the screening criteria since it is located within a TPA (HQTA) and is located within a low VMT area.


Therefore, in accordance with the *City of Costa Mesa Traffic Impact Analysis (TIA) Guidelines (dated October 2020)*, the proposed Project is exempt from the preparation of any further VMT analysis and may be presumed to have a less than significant CEQA-related transportation impact.


We appreciate the opportunity to provide this Technical Memorandum. Should you have any questions regarding the memorandum, please contact us at (949) 825-6175.

Attachments


SOURCE: SDK

LLG NNO SCALE

FIGURE 3A

PROPOSED SITE PLAN - OPTION 1

960 W. 16TH STREET RESIDENTIAL, COSTA MESA

SOURCE: SDK

LIG NO SCALE

PROPOSED SITE PLAN - OPTION 2

960 W. 16TH STREET RESIDENTIAL, COSTA MESA

TABLE 1
PROJECT TRAFFIC GENERATION RATES AND FORECAST ⁶

		AM Peak Hour			PN	A Peak Ho	our
ITE Land Use Code / Project Description	Daily	Enter	Exit	Total	Enter	Exit	Total
Generation Rates:							
ITE 140: Manufacturing (TE/TSF)	4.75	76%	24%	0.68	31%	69%	0.74
• ITE 150: Warehousing (TE/TSF)	1.17	77%	23%	0.17	28%	72%	0.18
 ITE 210: Single Family Detached Housing (TE/DU) 	9.43	26%	74%	0.70	63%	37%	0.94
 ITE 710: General Office Building (TE/TSF) 	10.84	88%	12%	1.52	17%	83%	1.44
Proposed Project							
 Residential Units (38 DU) 	358	7	20	27	23	13	36
 Live/Work Office (11,609 SF) 	126	16	2	18	3	14	17
Employee Reduction ⁷	<u>-57</u>	<u>-3</u>	<u>-2</u>	<u>-5</u>	<u>-3</u>	<u>-3</u>	<u>-6</u>
Total Proposed Trips	427	20	20	40	23	24	47
Existing/Entitled Land Use (Prior Tenant)							
• Office (16,652 SF)	181	22	3	25	4	20	24
• Warehousing (37,721 SF)	65	5	1	6	2	5	7
 Manufacturing (1,754 SF) 	<u>8</u>	<u>1</u>	<u>0</u>	<u>1</u>	<u>0</u>	<u>1</u>	<u>1</u>
Total Existing Trips	254	28	4	32	6	26	32
Net Difference Trip Generation Forecast: Proposed Project minus Existing Land Use	+173	-8	+16	+8	+17	-2	+15

Notes:

• TE/TSF = Trip ends per 1,000 SF of development

• TE/DU = Trip End per dwelling unit

⁶ Source: *Trip Generation*, 11th Edition, Institute of Transportation Engineers (ITE), Washington, D.C. (2021).

An employee reduction has been applied due to the assumption that half of the 38 dwelling units could have 1 employee trip that would not occur since they live on-site and would not have to commute to work. In addition, it has been assumed that on a daily basis half of the 19 employees would stay home for lunch. This equates to a daily employee trip reduction of 57 trips, which translates to a 11.8% reduction. This 11.8% reduction was then applied to the AM and PM peak hours.

Attachment C

////////////////rkengineer.com

NOVEMBER 8, 2024

Mr. Peter Carlson CARLSON STRATEGIC LAND SOLUTIONS 27134A Paseo Espada, Suite 323 San Juan Capistrano, CA 92675

SUBJECT: 16TH STREET RESIDENTIAL PROJECT AIR QUALITY AND GREENHOUSE GAS ANALYSIS, CITY OF COSTA MESA

Dear Mr. Carlson:

1.0 INTRODUCTION

RK ENGINEERING GROUP, INC. (RK) is pleased to provide this Air Quality and Greenhouse Gas (GHG) Analysis for the proposed 16th Street Residential Project (hereinafter referred to as "project").

The purpose of this study is to determine whether the air quality and GHG emissions generated during construction and operation of the project would exceed the South Coast Air Quality Management District (SCAQMD) significance thresholds. The methodology used in this assessment is consistent with SCAQMD and City of Costa Mesa standards.

1.1 Site Location and Project Description

The project site is located at the northeast corner of West 16th Street and Hampton Drive, in the City of Costa Mesa. The project site is approximately 2.35 acres and is currently occupied by an existing 50,308-square-foot commercial structure and approximately 44,956 square feet of hardscape. **Exhibit A** shows the location map of the proposed project.

The project proposes to demolish the existing commercial structure and associated parking lot and construct thirty-eight (38) single-family homes.

Construction activities are expected to consist of demolition, site preparation, grading, building construction, paving, and architectural coating. The project will require the import of approximately 585 cubic yards of earthwork material for grading purposes.

Exhibit B shows the proposed site plan used for this analysis. **Table 1** summarizes the land use assumptions used for this analysis.

1401 Dove Street | Suite 540 | Newport Beach, CA 92660 | +949.474.0809

Table 1 | Project Land Use Summary

Project Land Use	CalEEMod Land Use Category	Quantity	Metric ¹
Single Family Dwelling Units	Single Family Housing	38	DU
Onsite Paved Surfaces	Parking Lot	44.639	TSF

 1 DU = Dwelling unit.

TSF = Thousand square feet.

1.2 Sensitive Receptors

Sensitive receptors are considered land uses or other types of population groups that are more sensitive to air pollution exposure. Sensitive population groups include children, the elderly, the acutely and chronically ill, and those with cardio-respiratory diseases.

For CEQA purposes, the SCAQMD considers a sensitive receptor to be a location where a sensitive individual could remain for 24 hours or longer, such as residences, hospitals, and schools (etc.), as described in the Localized Significance Threshold Methodology (SCAQMD 2008a, page 3-2). There are several sensitive land uses adjacent to the project site, including the following.

A project site location map, including sensitive receptor locations, is provided in **Exhibit A**.

- **Receptor-1** Existing residential land uses located to the west of the project site. The nearest residential receptor located at Receptor-1 (marked as circle "1" on **Exhibit A**) is located approximately 35 feet (~11 meters) west of the project site's western boundary, along the western side of Hampton Drive.
- **Receptor-2** Existing residential land uses located to the north of the project site. The nearest residential receptor located at Receptor-2 (marked as circle "2" on **Exhibit A**) is located directly adjacent to the northern boundary of the project site.

For conservative localized analysis purposes, sensitive receptors are considered to be less than 25 meters from the project site.

1.3 Project Design Features (DF)

The following design features include several standard rules and requirements, best practices and building code requirements for reducing air quality and GHG emissions. Design features are assumed to be integrated into the project design and required as part of the conditions of approval of the project. Design features are not considered to be mitigation under CEQA.

Construction Design Features

- **DF-1** The project will follow the SCAQMD rules and requirements for fugitive dust control, which include, but are not limited to the following:
 - 1. All active construction areas shall be watered two (2) times daily.
 - 2. Any visible deposition on any public roadway shall be swept or washed at the site access points within 30 minutes.
 - 3. Any on-site stockpiles of debris, dirt or other dusty material shall be covered or watered twice daily.
 - 4. All operations on any unpaved surface shall be suspended if winds exceed 15 mph.
 - 5. Access points shall be washed or swept daily.
 - 6. Construction sites shall be sandbagged for erosion control.
 - 7. Apply nontoxic chemical soil stabilizers according to manufacturers' specifications to all inactive construction areas (previously graded areas inactive for 10 days or more).
 - Cover all trucks hauling dirt, sand, soil, or other loose materials, and maintain at least 2 feet of freeboard space in accordance with the requirements of California Vehicle Code (CVC) section 23114.
 - 9. Use gravel aprons at truck exits.
 - 10. Replace the ground cover of disturbed areas as quickly possible.
- **DF-2** Construction equipment shall be maintained in proper tune.
- **DF-3** All construction vehicles shall be prohibited from excessive idling. Excessive idling is defined as five (5) minutes or longer.
- **DF-4** Minimize the simultaneous operation of multiple construction equipment units, to the maximum extent feasible.
- **DF-5** The use of heavy construction equipment and earthmoving activity shall be suspended during Air Alerts when the Air Quality Index reaches the "Unhealthy" level.
- **DF-6** Establish an electricity supply to the construction site and use electric-powered equipment instead of diesel-powered equipment or generators, where feasible.
- **DF-7** Establish staging areas for the construction equipment that are as distant as possible from adjacent residential homes.

Operational Design Features

- **DF-9** The project will comply with the mandatory requirements of the California Building Standards Code, Title 24, Part 6 (Energy Code) and Part 11 (CALGreen), including, but not limited to:
 - 1. Install low flow fixtures and toilets, water efficient irrigation systems, drought tolerant/native landscaping, and reduce the amount of turf.
 - 2. Provide the necessary infrastructure to support electric vehicle charging.
 - 3. Provide solar installations/solar readiness zones per the prescribed Energy Design Ratings.
- **DF-10** The project will participate in local waste management recycling and composting programs.

2.0 MODELING PARAMETERS AND ASSUMPTIONS

The California Emissions Estimator Model Version 2022.1.1 (CalEEMod) was used to calculate criteria air pollutants and GHG emissions from the construction and operation of the project. CalEEMod is a statewide land use emissions computer model designed to provide a uniform platform for government agencies, land use planners, and environmental professionals to quantify criteria air pollutant and GHG emissions.

The model quantifies direct emissions from construction and operational activities (including vehicle use), as well as indirect emissions, such as GHG emissions from off-site energy generation, solid waste disposal, vegetation planting and/or removal, and water use. The model also identifies design features to reduce criteria pollutant and GHG emissions. The model was developed for the California Air Pollution Control Officers Association (CAPCOA) in collaboration with the California Air Districts.

2.1 Construction Assumptions

Construction of the project is estimated to begin in the year 2025. Construction activities are expected to consist of demolition, site preparation, grading, building construction, paving, and architectural coating. The project will demolish the existing commercial structure and associated parking lot, resulting in approximately 5,573 tons of debris. In addition, the project will require the import of approximately 585 cubic yards of earthwork material for grading purposes. For the purposes of this analysis, construction phases are not expected to overlap.

The CalEEMod default construction equipment list is based on survey data and the size of the site. The parameters used to estimate construction emissions, such as the worker and vendor trips and trip lengths, utilize the CalEEMod defaults. The construction equipment list is shown in **Table 2**.

The project will be required to comply with several standard fugitive dust control measures, per SCAQMD Rule 403. The following key inputs are utilized in CalEEMod and are based upon data provided from SCAQMD:

- Water exposed area 61% PM10 and PM2.5 reduction.
- Water unpaved roads twice daily 55% PM10 and PM2.5 reduction.
- Limit vehicle speeds on unpaved roads to 25 mph 44% PM10 and PM2.5 reduction.
- Sweep paved roads once per month 9% PM10 and PM2.5 reduction.

Phase	Equipment	Number	Hours Per Day	Soil Disturbance Rate (Acres/8- Hour Day)	Off-Road Equipment Daily Disturbance Footprint (Acres)	Total Daily Disturbance Footprint (Acres)	
	Concrete/Industrial Saws	1	8	0.00	0.00		
Demolition	Excavators	3	8	0.50	1.50	2.50	
	Rubber Tired Dozers	2	8	0.50	1.00		
Site	Rubber Tired Dozers	3	8	0.50	1.50	2 50	
Preparation	Tractors/Loaders/Backhoes	4	8	0.50	2.00	3.50	
	Excavators	1	8	0.50	0.50		
Cure ellier er	Graders	1	8	0.50	0.50	2.00	
Grading	Rubber Tired Dozers	1	8	0.50	0.50	3.00	
	Tractors/Loaders/Backhoes	3	8	0.50	1.50		
	Cranes	1	7	0.00	0.00		
	Forklifts	3	8	0.00	0.00		
Building Construction	Generator Sets	1	8	0.00	0.00	1.31	
	Tractors/Loaders/Backhoes	3	7	0.50	1.31		
	Welders	1	8	0.00	0.00		
	Cement and Mortar Mixers	2	6	0.00	0.00		
	Pavers	1	8	0.00	0.00		
Paving	Paving Equipment	2	6	0.00	0.00	0.50	
	Rollers	2	6	0.00	0.00		
	Tractors/Loaders/Backhoes	1	8	0.50	0.50		
Architectural Coating ¹ CalEEMod defa	Air Compressors	1	6	0.00	0.00	0.00	

Table 2 | Construction Equipment Assumptions¹

¹CalEEMod defaults.

rkengineer.com

2.2 Localized Construction Analysis Modeling Parameters

CalEEMod calculates construction emissions based on the number of equipment hours and the maximum daily disturbance activity possible for each piece of equipment. This report identifies the following parameters in the project design or applicable mitigation measures in order to compare CalEEMod reported emissions against the localized significance threshold lookup tables:

- 1. The off-road equipment list (including type of equipment, horsepower, and hours of operation) assumed for the day of construction activity with maximum emissions.
- 2. The maximum number of acres disturbed on the peak day.
- 3. Any emission control devices added onto off-road equipment.
- 4. Specific dust suppression techniques used on the day of construction activity with maximum emissions.

2.3 **Operational Assumptions**

Operational emissions occur over the life of the project and are considered "long-term" sources of emissions. Operational emissions include both direct and indirect sources. This section briefly describes the operational sources of emissions analyzed for the project.

2.3.1 Mobile Source Emissions

Mobile source emissions are the largest source of long-term air pollutants from the operation of the project. Mobile sources are direct sources of project emissions that are primarily attributed to tailpipe exhaust and road dust (tire, brake, clutch, and road surface wear) from motor vehicles traveling to and from the site.

Estimates of mobile source emissions require information on four parameters: trip generation, trip length, vehicle/fleet mix, and emission factors (quantity of emission for each mile traveled or time spent idling by each vehicle).

The trip generation rates used for this analysis are based on the Institute of Transportation Engineers (ITE) Trip Generation Manual, 11th Edition. The proposed project consists of thirty-eight (38) single-family dwelling units. As such, ITE Land Use 210 – Single-Family Detached Housing most accurately reflects the proposed project land use. For trip lengths, the CalEEMod defaults are used.

The Emission Factors (EMFAC2021) 2021 model and off-model adjustments factors to account for the SAFE Vehicle Rule is used to estimate the mobile source emissions are embedded in the CalEEMod emissions model. No adjustments have been made to default emission factors.

To be conservative, this analysis has assumed that 2% of the total trips associated with the project will be heavy trucks with a gross vehicle weight rating (GVWR) of 10,000 pounds or greater. This includes LHD2, MHD, HHD, OBUS, UBUS, and SBUS vehicles. The adjusted vehicle mix is proportioned according to the default CalEEMod vehicle mix.

Table 3 summarizes the adjusted vehicle mix used for the project.

Vehicle Type	Vehicle Mix
Light Duty Automobile (LDA)	50.67%
Light Duty Truck (LDTI)	4.20%
Light Duty Truck (LDT2)	23.48%
Medium Duty Truck (MDV)	14.66%
Light Heavy Truck (LHD1)	2.78%
Light Heavy Truck (LHD2)	0.42%
Medium Heavy Truck (MHD)	0.91%
Heavy Heavy Truck (HHD)	0.33%
Other Bus (OBUS)	0.04%
Urban Bus (UBUS)	0.02%
Motorcycle (MCY)	2.21%
School Bus (SBUS)	0.06%
Motor Home (MH)	0.22%
Total	100%

 Table 3 | Operational Vehicle Mix¹

¹ Adjusted fleet mix to include 2% total trucks over 10,000 lbs. GVWR (LHD2, MHD, HHD, OBUS, UBUS, SBUS, MH).

2.3.2 Energy Source Emissions

Energy usage includes both direct and indirect sources of emissions. Direct sources of emissions include on-site natural gas usage (non-hearth) for heating, while indirect emissions include electricity generated by offsite power plants. Natural gas use is measured in units of thousand British Thermal Units (kBTU) per size metric for each land use subtype and electricity use is measured in kilowatt hours (kWh) per size metric for each land use subtype.

CalEEMod divides building electricity and natural gas use into uses that are subject to Title 24 standards and those that are not. Lighting electricity usage is also calculated as a separate category in CalEEMod. For electricity, Title 24 uses include the major building envelope systems covered by Part 6 (California Energy Code) of Title 24, such as space heating, space cooling, water heating, and ventilation. Non-Title 24 uses include all other end uses, such as appliances, electronics, and other miscellaneous plug-in uses. Because some lighting is not considered as part of the building envelope energy budget, and since a separate mitigation measure is applicable to this end use, CalEEMod makes lighting a separate category.

For natural gas, uses are likewise categorized as Title 24 or Non-Title 24. Title 24 uses include building heating and hot water end uses. Non-Title 24 natural gas uses include cooking and appliances (including pool/spa heaters).

The baseline values are based on the California Energy Commission (CEC) sponsored California Commercial End Use Survey (CEUS) and Residential Appliance Saturation Survey (RASS) studies.

The project will be required to provide on-site renewable energy photovoltaic installations (solar panels), as prescribed by the 2022 Building Energy Efficiency Standards for Residential and Nonresidential Buildings.

The CalEEMod default estimate for the proposed project's energy usage is shown in **Table 4**.

Land Use	Electricity Usage (KWhr/yr)²	Natural Gas Usage (KBTU/yr)²
Single Family Housing	262,015.51	1,456,743.15
Parking Lot	39,103.76	
Total	301,119.27	1,456,743.15

Table 4 | Electricity and Natural Gas Usage¹

¹ CalEEMod defaults.

² KWhr/yr = kilowatt hours per year.

KBTU/yr = thousand British Thermal Units per year.

2.3.3 Area Source Emissions

Area source emissions are direct sources of emissions that fall under four categories: hearths, consumer products, architectural coatings, and landscaping equipment. Per SCAQMD Rule 445, no wood burning devices are allowed in new developments; therefore, no wood hearths are included in this project.

Consumer products are various solvents used in non-industrial applications which emit ROGs during their product use. These typically include cleaning supplies, kitchen aerosols, cosmetics, and toiletries.

2.3.4 Other Sources of Operational Emissions

- **Water.** Greenhouse gas emissions are generated from the upstream energy required to supply and treat the water used on the project site. Indirect emissions from water usage are counted as part of the project's overall impact.
- **Waste.** CalEEMod calculates the indirect GHG emissions associated with waste that is disposed of at a landfill. The program uses annual waste disposal rates from the California Department of Resources Recycling and Recovery (CalRecycle) data for individual land uses. The program quantifies the GHG emissions associated with the decomposition of the waste which generates methane based on the total amount of degradable organic carbon.

The project's estimated water usage and waste generation is reported in Table 5.

Table 5 | Operational Water Usage and Waste Generation¹

Land Use		Waste Generation		
	Indoor	Outdoor	Total	(tons/yr)
Single Family Housing	1,425,974.70	277,968.31	1,703,943.01	29.98
Parking Lot				
Total	1,425,974.70	277,968.31	1,703,943.01	29.98

¹CalEEMod defaults.

3.0 SIGNIFICANCE THRESHOLDS

3.1 Air Quality Regional Significance Thresholds

The SCAQMD has established air quality emissions thresholds for criteria air pollutants for the purposes of determining whether a project may have a significant effect on the environment per Section 15002(g) of the Guidelines for implementing CEQA. By complying with the thresholds of significance, the project would be in compliance with the SCAQMD Air Quality Management Plan (AQMP) and the federal and state air quality standards.

Table 6 lists the air quality significance thresholds for the six air pollutants analyzed in this report. Lead is not included as part of this analysis as the project is not expected to emit lead in any significant measurable quantity.

Pollutant	Construction (lbs./day)	Operation (Ibs./day)
NO _X	100	55
VOC	75	55
PM ₁₀	150	150
PM _{2.5}	55	55
SOx	150	150
СО	550	550

Table 6 | SCAQMD Regional Significance Thresholds¹

¹Source: <u>http://www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf</u>.

3.2 Air Quality Localized Significance Thresholds

Air quality emissions were analyzed using the SCAQMD's Mass Rate Localized Significance Threshold (LST) Look-up Tables.

Table 7 lists the Localized Significance Thresholds (LSTs) used to determine whether a project may generate significant adverse localized air quality impacts. LSTs represent the maximum emissions from a project that are not expected to cause or contribute to an exceedance of the most stringent applicable federal or state ambient air quality standard. LSTs are developed based on the ambient concentrations of four applicable air pollutants for SRA-18 (North Orange County Coastal).

The nearest existing sensitive receptors are located along the northern boundary of the project site, less than 25 meters from potential areas of on-site construction and operational activity. Although receptors are located closer than 25 meters to the site, SCAQMD LST methodology states that projects with boundaries located closer than 25 meters to the nearest receptor should use the LSTs for receptors located at 25 meters.

The daily disturbance area is calculated to be 3.5 acres, however LST thresholds are only based on 1, 2, and 5-acre sites. To be conservative, a linear trend was used to estimate the thresholds for 3.5 acres based on the established LST thresholds.

rkengineer.com

Pollutant	Construction (Ibs./day)	Operation (Ibs./day)
NO _X	161.1	161.1
СО	1,325.2	1,325.2
PM ₁₀	10.4	2.9
PM _{2.5}	6.9	1.8

Table 7 | SCAQMD Localized Significance Thresholds (LSTs)¹

¹Source: SCAQMD Mass Rate Localized Significance Thresholds for 3.5 acres/day in SRA-18 at 25 meters.

3.3 GHG Significance Thresholds

3.3.1 SCAQMD GHG Interim Significance Thresholds

The SCAQMD has published the Interim CEQA Greenhouse Gas (GHG) Significance Thresholds, December 2008, to assist local agencies with determining the impact of a project's GHG emissions. SCAQMD's objective in providing the GHG guidelines is to establish a performance standard that will ultimately contribute to reducing GHG emissions below 1990 levels, and thus achieve the requirements of the California Global Warming Solutions Act (AB 32).

In the absence of a formal threshold established by the State, SCAQMD's interim GHG threshold has been established for use by lead agencies in determining significance of GHG emissions in CEQA. SCAQMD guidance describes a five-tiered approach for determining significance. Tier 3 is the primary method used for development projects of this size and is the approach used in this analysis. The Tier 3 approach limits the amount of GHG emissions from residential and commercial development projects to 3,000 metric tons of CO₂ equivalents per year (MTCO₂e/yr).

If the project exceeds 3,000 MTCO₂e/yr, then the impact is considered significant, and mitigation measures would be required to reduce emissions below the threshold.

4.0 AIR QUALITY IMPACT ANALYSIS

4.1 Short-Term Air Quality Impacts - Construction

4.1.1 Regional Emissions - Construction

Regional air quality emissions include both on-site and off-site emissions associated with construction of the project. As shown in **Table 8**, regional daily emissions of criteria pollutants are expected to be below the allowable thresholds of significance.

CalEEMod emissions outputs are provided in **Appendix A**.

Activity	Maximum Daily Emissions (lbs./day) ¹						
·	VOC	NOx	со	SO₂	PM 10	PM _{2.5}	
Demolition	2.49	24.98	21.82	0.05	3.41	1.33	
Site Preparation	3.37	31.71	31.16	0.05	9.26	5.25	
Grading	1.80	16.45	18.81	0.03	3.71	2.05	
Building Construction	1.12	10.04	13.75	0.02	0.59	0.40	
Paving	0.86	6.30	9.87	0.01	0.52	0.30	
Architectural Coating	19.97	0.87	1.26	0.00	0.06	0.03	
Maximum ¹	19.97	31.71	31.16	0.05	9.26	5.25	
SCAQMD Threshold	75	100	550	150	150	55	
Exceeds Threshold?	No	No	No	No	No	No	

Table 8 Regional Construction Emissions¹

¹ Maximum daily emissions during summer or winter; includes both onsite and offsite project emissions.

The project must follow mandatory SCAQMD rules and requirements with regards to fugitive dust control, as described in Section 6.1.3. Compliance with the standard dust control measures is considered to be part of the conditions of approval for the project and built into the design features.

Table 8 shows that the project's daily construction emissions will be below the applicable SCAQMD air quality standards and thresholds of significance. As a result, the project would not contribute substantially to an existing or projected air quality violation.

Furthermore, by complying with the SCAQMD standards, the project would not contribute to a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable Federal or State ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).

Therefore, the project's short-term construction impact on regional air resources will be less than significant.

4.1.2 Localized Emissions - Construction

Table 9 illustrates the construction-related localized emissions and compares the results to SCAQMD LST thresholds. As shown in **Table 9**, the emissions will be below the SCAQMD thresholds of significance for localized construction emissions. The project must follow all standard SCAQMD rules

and requirements with regards to fugitive dust control, as described in Section 6.1.3. Compliance with the dust control is considered a standard requirement and included as part of the project's design features.

Therefore, the project's short-term construction impact on localized air resources will be less than significant.

Table 9 | Localized Construction Emissions

Activity		Maximum Da (lbs./	ily Emissions day) ¹	
	NO _x	СО	PM ₁₀	PM _{2.5}
Onsite Emissions	31.64	30.18	9.03	5.20
SCAQMD Localized Threshold ²	161.1	1,325.2	10.6	6.9
Exceeds Threshold?	No	No	No	No

¹ Maximum daily emissions during summer or winter; includes both onsite and offsite project emissions. ² Source: SCAOMD Mass Pate Localized Significance Thresholds for 2.5 acros(day in SPA 18 at 25 meters)

² Source: SCAQMD Mass Rate Localized Significance Thresholds for 3.5 acres/day in SRA-18 at 25 meters.

4.2 Long-Term Air Quality Impacts - Operation

4.2.1 Regional Emissions - Operation

Long-term unmitigated operational air pollutant impacts from the project are shown in **Table 10**. CalEEMod emissions outputs are provided in **Appendix A**.

The project's daily unmitigated operational emissions will be below the applicable SCAQMD regional air quality standards and thresholds of significance, and the project would not contribute substantially to an existing or projected air quality violation. Furthermore, by complying with the SCAQMD standards, the project would not contribute to a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable Federal or State ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).

Therefore, the project's long-term regional air quality impacts will be less than significant.

Activity		М	aximum Da (lbs./	aily Emissic 'day) ¹	ons	
, i i i i i i i i i i i i i i i i i i i	voc	NOx	со	SO ₂	PM ₁₀	PM _{2.5}
Mobile Sources	1.16	0.89	10.39	0.03	2.45	0.63
Area Sources	1.95	0.65	2.42	0.00	0.05	0.05
Energy Sources	0.02	0.37	0.16	0.00	0.03	0.03
Total	3.13	1.91	12.97	0.03	2.53	0.71
SCAQMD Threshold	55	55	550	150	150	55
Exceeds Threshold?	No	No	No	No	No	No

Table 10 Regional Operational Emissions

¹ Maximum daily emissions during summer or winter; includes both onsite and offsite project emissions.

4.2.2 Localized Emissions - Operations

Table 11 shows the localized operational emissions and compares the results to SCAQMD LST thresholds of significance. As shown in **Table 11**, the emissions will be below the SCAQMD thresholds of significance for localized operational emissions.

Therefore, the project's long-term localized air quality impacts will be less than significant.

Table 11 | Localized Operational Emissions

Activity			aily Emissions 'day) ¹	
	NO _x	со	PM 10	PM _{2.5}
Onsite Emissions	2.03	3.10	0.20	0.11
SCAQMD Localized Threshold ²	161.1	1,325.2	2.9	1.8
Exceeds Threshold?	No	No	No	No

¹ Maximum daily emissions during summer or winter.

² Source: SCAQMD Mass Rate Localized Significance Thresholds for 3.5 acres/day in SRA-18 at 25 meters.

5.0 GREENHOUSE GAS IMPACT ANALYSIS

5.1 Greenhouse Gas Emissions - Construction

Greenhouse gas emissions are estimated for on-site and off-site construction activity using CalEEMod. **Table 12** shows the construction greenhouse gas emissions, including equipment and worker vehicle emissions for all phases of construction.

CalEEMod GHG output calculations are provided in Appendix A.

Emissions (MTCO₂e)¹ Activity Offsite Onsite Total Demolition 70.15 50.33 120.48 74.72 Site Preparation 3.19 77.91 72.79 Grading 66.00 6.79 **Building Construction** 190.94 24.39 215.33 Paving 14.75 2.77 17.52 Architectural Coating 1.46 0.38 1.84 Total 418.01 87.85 505.87 **Amortized Over 30 Years²** 13.93 2.93 16.86

Table 12 Construction Greenhouse Gas Emissions

¹MTCO₂e = metric tons of carbon dioxide equivalents (includes carbon dioxide, methane, nitrous oxide, and/or hydrofluorocarbons).

²The emissions are amortized over 30 years and added to the operational emissions, pursuant to SCAQMD recommendations.

Because impacts from construction activities occur over a relatively short period of time, they contribute a relatively small portion of the overall lifetime project GHG emissions. Therefore, the SCAQMD recommends assessing construction GHG impacts by amortizing emissions over a 30-year project lifetime and adding them to the overall project operational emissions. Pursuant to SCAQMD recommendations, this study assesses construction related GHG emissions along with the project's operational emissions, as further discussed in the section below.

5.2 Greenhouse Gas Emissions - Operation

Greenhouse gas emissions are estimated for on-site and off-site operational activity using CalEEMod. **Table 13** shows the project's operational greenhouse gas emissions, along with the project's amortized construction emissions.

RK ENGINEERING

Appendix A provides the CalEEMod emissions outputs for this study.

Table 13 Operational Greenhouse Gas Emissions

Emission Source	Unmitigated GHG Emissions (MTCO2e/yr.) ¹
Mobile Sources	414.26
Area Sources	9.74
Energy Sources	150.45
Water	4.65
Waste	9.36
Refrigerant	0.09
Construction (30-Year Amortization)	16.86
Total Annual Emissions	605.41
SCAQMD Tier 3 Screening Threshold	3,000
Exceeds Threshold?	Νο

¹MTCO₂e/yr. = metric tons of carbon dioxide equivalents per year.

As shown in **Table 13**, the proposed project's GHG emissions are not expected to exceed the SCAQMD Tier 3 Screening Threshold of 3,000 MTCO₂e for residential projects.

Therefore, the proposed project's impact from GHG emissions will be less than significant.

6.0 CONCLUSIONS

RK Engineering Group, Inc. has completed this Air Quality and Greenhouse Gas Impact Analysis for the proposed 16th Street Residential Project. Based upon this review, the proposed project's impact from air quality and greenhouse gas emissions is considered less than significant.

RK Engineering Group, Inc. appreciates this opportunity to work with the CARLSON STRATEGIC LAND SOLUTIONS on this project. If you have any questions regarding this review, or need further clarification, please contact us at (949) 474-0809.

Sincerely, **RK ENGINEERING GROUP, INC.**

Bujan Estula

Bryan Estrada, AICP Principal

Attachments

\$70.

Becca Morrison Planner II

Exhibits

rkengineer.com

Legend

- = Sensitive Receptor Location
- = Project Site Boundary

Exhibit A

Location Map

16TH STREET RESIDENTIAL PROJECT AIR QUALITY AND GREENHOUSE GAS IMPACT STUDY // CITY OF COSTA MESA, CA -43-GROUP INC.

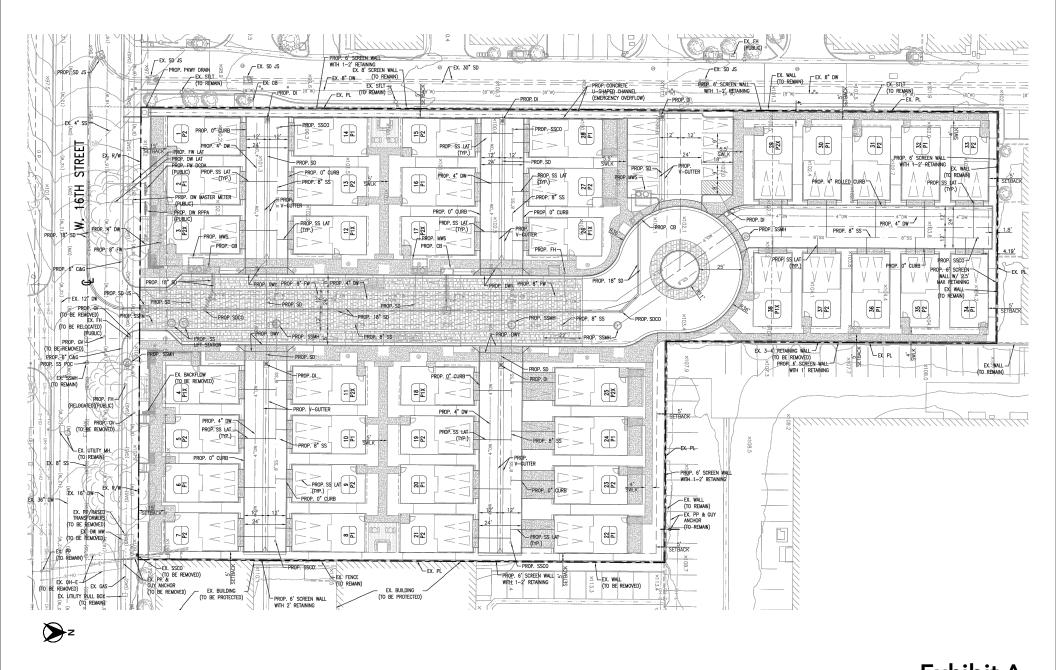


Exhibit A Location Map

2827-2024-14

16TH STREET RESIDENTIAL PROJECT AIR QUALITY AND GREENHOUSE GAS IMPACT STUDY // CITY OF COSTA MESA, CA

-44-

Appendices

rkengineer.com

Appendix A CalEEMod Emissions Outputs

16th Street Residential Project Custom Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 3. Construction Emissions Details
 - 3.1. Demolition (2025) Unmitigated
 - 3.3. Site Preparation (2025) Unmitigated
 - 3.5. Grading (2025) Unmitigated
 - 3.7. Building Construction (2025) Unmitigated
 - 3.9. Building Construction (2026) Unmitigated

-47-

- 3.11. Paving (2026) Unmitigated
- 3.13. Architectural Coating (2026) Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source
 - 4.3.1. Unmitigated
 - 4.4. Water Emissions by Land Use
 - 4.4.1. Unmitigated
 - 4.5. Waste Emissions by Land Use
 - 4.5.1. Unmitigated
 - 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
 - 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated

5. Activity Data

- 5.1. Construction Schedule
- 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
- 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
- 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation

- 5.6.1. Construction Earthmoving Activities
- 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
- 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
- 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
- 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment

-50-

5.14.1. Unmitigated

- 5.15. Operational Off-Road Equipment
 - 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers

5.17. User Defined

5.18. Vegetation

- 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
- 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
- 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	16th Street Residential Project
Construction Start Date	1/1/2025
Operational Year	2025
Lead Agency	—
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	16.2
Location	33.63300009322788, -117.93838046874791
County	Orange
City	Costa Mesa
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5911
EDFZ	7
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas
App Version	2022.1.1.28

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)		Special Landscape Area (sq ft)	Population	Description				
Single Family Housing 38.0 Dwelling Unit 2.35 74,100 -52- 17,548 0.00 113												
6 / 42												

Parking Lot	44.6	1000sqft	1.02	0.00	0.00	0.00	_	—
-------------	------	----------	------	------	------	------	---	---

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

	тос		NOV			DMAOE	DMAOD	DIALOT				DOOD		COOT	0114	NDO		0000
Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	-	_	-	-	-	-	-	-	_	-	-	-	_	_	_
Unmit.	4.01	3.37	31.7	31.2	0.05	1.37	7.89	9.26	1.26	3.99	5.25	_	5,528	5,528	0.22	0.05	1.04	5,549
Daily, Winter (Max)	—	_	_	_	—	—	—	_	—	—	—	_	_	_	_	_	_	_
Unmit.	20.0	20.0	31.7	31.0	0.05	1.37	7.89	9.26	1.26	3.99	5.25	_	5,776	5,776	0.32	0.38	0.14	5,898
Average Daily (Max)		—	_	_		—	—	_	—	—	—	_	_	_	—	_	—	—
Unmit.	2.02	1.91	11.9	13.0	0.02	0.49	1.45	1.94	0.45	0.60	1.05	_	2,623	2,623	0.11	0.07	0.54	2,649
Annual (Max)	—	_	_		-	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.37	0.35	2.18	2.37	< 0.005	0.09	0.27	0.35	0.08	0.11	0.19	_	434	434	0.02	0.01	0.09	439

2.2. Construction Emissions by Year, Unmitigated

		· · ·	,	,	<i>,</i>	,				, ,	/	/						
Year	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily -	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Summer																		
(Max)									-53-									
									7 / 40									

2025	4.01	3.37	31.7	31.2	0.05	1.37	7.89	9.26	1.26	3.99	5.25	—	5,528	5,528	0.22	0.05	1.04	5,549
2026	1.34	1.12	10.0	13.8	0.02	0.38	0.26	0.59	0.35	0.06	0.40	—	2,703	2,703	0.11	0.04	0.95	2,719
Daily - Winter (Max)	_	—	—	_	-		_	—	—	_	—	—	-	—	_	—	_	—
2025	4.01	3.37	31.7	31.0	0.05	1.37	7.89	9.26	1.26	3.99	5.25	—	5,776	5,776	0.32	0.38	0.14	5,898
2026	20.0	20.0	10.0	13.7	0.02	0.38	0.26	0.59	0.35	0.06	0.40	—	2,694	2,694	0.11	0.04	0.02	2,710
Average Daily	-	_	-	-	—		_	-	_	-	-	_	—	_	-	—		_
2025	1.54	1.27	11.9	13.0	0.02	0.49	1.45	1.94	0.45	0.60	1.05	_	2,623	2,623	0.11	0.07	0.54	2,649
2026	2.02	1.91	5.28	7.28	0.01	0.20	0.12	0.32	0.18	0.03	0.21	_	1,409	1,409	0.06	0.02	0.23	1,418
Annual	-	-	-	_	-	-	_	_	—	_	_	_	—	-	-	—	-	-
2025	0.28	0.23	2.18	2.37	< 0.005	0.09	0.27	0.35	0.08	0.11	0.19	_	434	434	0.02	0.01	0.09	439
2026	0.37	0.35	0.96	1.33	< 0.005	0.04	0.02	0.06	0.03	0.01	0.04	_	233	233	0.01	< 0.005	0.04	235

2.4. Operations Emissions Compared Against Thresholds

Un/Mit.	TOG	ROG	NOx	co	SO2	PM10E	PM10D	PM10T		PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	_	—	-	-	—	-	-	—	—	—	—	-	—	-	_	-	_
Unmit.	3.31	3.13	1.83	13.0	0.03	0.10	2.44	2.54	0.10	0.62	0.71	18.9	4,320	4,339	2.09	0.10	10.5	4,432
Daily, Winter (Max)	_	-	-	-	-	_	-	-	_	-	-	-	-	_	-	_	-	_
Unmit.	3.10	2.93	1.89	10.1	0.03	0.10	2.44	2.53	0.09	0.62	0.71	18.9	4,209	4,228	2.09	0.11	0.79	4,312
Average Daily (Max)	—	-	-	-	-	-	-	_	_	_	-	_	_	_	-	_	-	_
Unmit.	3.13	3.00	1.31	11.3	0.03	0.05	2.37	2.42	0.05	0.60	0.65	18.9	3,449	3,468	2.08	0.10	4.76	3,555
Annual (Max)	—	-	-	_	_	_	_	_	_ -54-	_	_	_	_	_	_	_	_	_

	Unmit.	0.57	0.55	0.24	2.07	< 0.005	0.01	0.43	0.44	0.01	0.11	0.12	3.13	571	574	0.34	0.02	0.79	589
--	--------	------	------	------	------	---------	------	------	------	------	------	------	------	-----	-----	------	------	------	-----

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	_	_	_	—	_	-	_	_	—	-
Mobile	1.27	1.16	0.81	10.4	0.03	0.01	2.44	2.45	0.01	0.62	0.63	—	2,592	2,592	0.11	0.09	9.99	2,631
Area	2.00	1.95	0.65	2.42	< 0.005	0.05	_	0.05	0.05	_	0.05	0.00	806	806	0.02	< 0.005	_	807
Energy	0.04	0.02	0.37	0.16	< 0.005	0.03	_	0.03	0.03	—	0.03	—	906	906	0.07	< 0.005	—	909
Water	_	_	—	_	—	_	_	_	_	_	—	2.73	16.3	19.0	0.28	0.01	_	28.1
Waste	_	_	—	_	—	_	_	_	_	_	—	16.2	0.00	16.2	1.61	0.00	_	56.5
Refrig.	—	_	—	_	—	_	_	_	_	_	—	_	—	_	—	—	0.53	0.53
Total	3.31	3.13	1.83	13.0	0.03	0.10	2.44	2.54	0.10	0.62	0.71	18.9	4,320	4,339	2.09	0.10	10.5	4,432
Daily, Winter (Max)			—	_	_	_	_	_	_	—		_		—	_	_	—	-
Mobile	1.26	1.15	0.89	9.63	0.02	0.01	2.44	2.45	0.01	0.62	0.63	-	2,487	2,487	0.11	0.09	0.26	2,518
Area	1.79	1.76	0.63	0.27	< 0.005	0.05	_	0.05	0.05	_	0.05	0.00	800	800	0.02	< 0.005	_	801
Energy	0.04	0.02	0.37	0.16	< 0.005	0.03	_	0.03	0.03	_	0.03	_	906	906	0.07	< 0.005	_	909
Water	_	_	_	_	_	_	_	_	_	_	_	2.73	16.3	19.0	0.28	0.01	_	28.1
Waste	_	_	_	_	_	_	_	_	_	_	_	16.2	0.00	16.2	1.61	0.00	_	56.5
Refrig.	_	_	-	—	_	_	_	_	_	_	_	_	_	_	—	_	0.53	0.53
Total	3.10	2.93	1.89	10.1	0.03	0.10	2.44	2.53	0.09	0.62	0.71	18.9	4,209	4,228	2.09	0.11	0.79	4,312
Average Daily	—	-	_	-	_	-	_	_	_	_	_	_	-	-	_	-	-	—
Mobile	1.23	1.12	0.88	9.69	0.02	0.01	2.37	2.38	0.01	0.60	0.61	—	2,468	2,468	0.11	0.09	4.23	2,502
Area	1.86	1.85	0.06	1.49	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	0.00	58.8	58.8	< 0.005	< 0.005	_	58.8
Energy	0.04	0.02	0.37	0.16	< 0.005	0.03	_	0.03	^{0.0} 35-	_	0.03	_	906	906	0.07	< 0.005	_	909

Water	_	_	_	_	-	_	_	-	_	_	_	2.73	16.3	19.0	0.28	0.01	-	28.1
Waste	_	—	_	_	_	_	—	—	_	_	_	16.2	0.00	16.2	1.61	0.00	—	56.5
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0.53	0.53
Total	3.13	3.00	1.31	11.3	0.03	0.05	2.37	2.42	0.05	0.60	0.65	18.9	3,449	3,468	2.08	0.10	4.76	3,555
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Mobile	0.22	0.20	0.16	1.77	< 0.005	< 0.005	0.43	0.43	< 0.005	0.11	0.11	—	409	409	0.02	0.02	0.70	414
Area	0.34	0.34	0.01	0.27	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	0.00	9.73	9.73	< 0.005	< 0.005	—	9.74
Energy	0.01	< 0.005	0.07	0.03	< 0.005	0.01	—	0.01	0.01	—	0.01	—	150	150	0.01	< 0.005	—	150
Water	—	—	—	—	—	—	—	—	—	—	—	0.45	2.70	3.15	0.05	< 0.005	—	4.65
Waste	_	—	_	_	—	_	—	—	_	_	_	2.67	0.00	2.67	0.27	0.00	—	9.36
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.09	0.09
Total	0.57	0.55	0.24	2.07	< 0.005	0.01	0.43	0.44	0.01	0.11	0.12	3.13	571	574	0.34	0.02	0.79	589

3. Construction Emissions Details

3.1. Demolition (2025) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_
Daily, Summer (Max)		_	—		—	—	—	—	—	—	—		—	—		—		_
Daily, Winter (Max)		_			—	—		—	—	—	—		—	—		—		_
Off-Roa d Equipm ent	2.86	2.40	22.2	19.9	0.03	0.92		0.92	0.84		0.84		3,425	3,425	0.14	0.03		3,437
Demoliti on	_	_	_	_	_	_	1.71	1.71	 -56-	0.26	0.26	_	_	_		_	_	_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	—	-	—	_	—	_	—	-	—	—	—	-	_	-	-	—
Off-Roa d Equipm ent	0.35	0.30	2.74	2.46	< 0.005	0.11	-	0.11	0.10	_	0.10	_	422	422	0.02	< 0.005	_	424
Demoliti on	—	-	_	-	—	_	0.21	0.21	_	0.03	0.03	-	_	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	-	-	-	-	_	_	_	-	—	_	—	—	-	_	-	-
Off-Roa d Equipm ent	0.06	0.05	0.50	0.45	< 0.005	0.02	-	0.02	0.02	_	0.02	_	69.9	69.9	< 0.005	< 0.005		70.1
Demoliti on	—	-	_	-	—	_	0.04	0.04	—	0.01	0.01	—	—	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	—	_	—	-	—	-	—	-	—	—	—	_	-	—	-	-
Daily, Summer (Max)	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-
Daily, Winter (Max)	_	-	-	-	-	_	-	-	-	-	_	-	-	-	-	_	_	-
Worker	0.06	0.05	0.06	0.73	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	189	189	< 0.005	0.01	0.02	192
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.21	0.04	2.72	1.17	0.01	0.03	0.56	0.59	0.03	0.16	0.18	_	2,161	2,161	0.17	0.35	0.12	2,270
Average Daily	—	-	—	-	—	—	—	—	—	—	—	—	—	-	_	—	—	_
Worker	0.01	0.01	0.01	0.09	0.00	0.00	0.02	0.02	0.00	0.01	0.01	_	23.7	23.7	< 0.005	< 0.005	0.04	24.0
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0. 097_	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Hauling	0.03	0.01	0.34	0.14	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	266	266	0.02	0.04	0.24	280
Annual	-	_	-	-	—	-	_	_	_	-	-	-	_	-	-	_	-	-
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	3.92	3.92	< 0.005	< 0.005	0.01	3.97
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	0.06	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	44.1	44.1	< 0.005	0.01	0.04	46.4

3.3. Site Preparation (2025) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	-	_	-	_	-	_	_	-	-	-	-	-	_	_
Daily, Summer (Max)		_	_	_	_	_	_	_	_	—		_	_	_	_	_	_	-
Off-Roa d Equipm ent	3.94	3.31	31.6	30.2	0.05	1.37		1.37	1.26		1.26		5,295	5,295	0.21	0.04	_	5,314
Dust From Material Movemer		-		_	_	_	7.67	7.67	—	3.94	3.94		_	—	—	—	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		-	—	_	—		_	—	—	—	—	—	—	—	—	—	_	_
Off-Roa d Equipm ent	3.94	3.31	31.6	30.2	0.05	1.37	-	1.37	1.26		1.26		5,295	5,295	0.21	0.04	-	5,314
Dust From Material Movemer		-	-	_	_		7.67	7.67	-	3.94	3.94		-	_		_	-	-

						1												
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		—	—	—	—	—	—	—	—	—		—	_	-	—	_	—	_
Off-Roa d Equipm ent	0.33	0.28	2.69	2.56	< 0.005	0.12	_	0.12	0.11	_	0.11	_	450	450	0.02	< 0.005	_	451
Dust From Material Movemer	—	-	-	-	-	-	0.65	0.65	-	0.33	0.33	_	-	_	_	-	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.06	0.05	0.49	0.47	< 0.005	0.02		0.02	0.02		0.02		74.5	74.5	< 0.005	< 0.005	_	74.7
Dust From Material Movemer		_	-	-	-	_	0.12	0.12		0.06	0.06	_	-	_	_	-	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)		_	_	_	_	_	-	_	_	_	-	_	_	_	-	_	_	_
Worker	0.07	0.06	0.06	0.98	0.00	0.00	0.23	0.23	0.00	0.05	0.05	-	232	232	< 0.005	0.01	0.88	236
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)			_	—	_	_	—		-	-	—	_	-	—	_	_	—	-
Worker	0.07	0.06	0.07	0.85	0.00	0.00	0.23	0.23	^{0.0} 89-	0.05	0.05	_	221	221	< 0.005	0.01	0.02	224

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-		_	_	_	_	—	-	_	_	_	_	-	_	_	—	-
Worker	0.01	0.01	0.01	0.08	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	—	19.0	19.0	< 0.005	< 0.005	0.03	19.3
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_	_	_	-	-	_	_	-	-	-	_	-	_	-	_	-	-
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	3.15	3.15	< 0.005	< 0.005	0.01	3.19
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.5. Grading (2025) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location		ROG	NOx	СО			PM10D	PM10T	-	PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	-	-	—	_	_	_	_	—	_	-	_	_	_	_	_	_
Daily, Summer (Max)	—	—	—	—	—	—		—	—	—		—	—				_	—
Off-Roa d Equipm ent	2.07	1.74	16.3	17.9	0.03	0.72		0.72	0.66	_	0.66	_	2,959	2,959	0.12	0.02		2,970
Dust From Material Movemer		_	_				2.76	2.76		1.34	1.34							
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	_	_	—	—	—		—		—		—	—					—

Average Daily	_	-	_	-	-	—	_	_	-	-	-	_	-	-	_	_		-
Off-Roa d Equipm ent	0.28	0.23	2.18	2.40	< 0.005	0.10	_	0.10	0.09	_	0.09	_	397	397	0.02	< 0.005		399
Dust From Material Movemer			_				0.37	0.37	_	0.18	0.18	_			_			
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	-	-	-	-	—	—	—	—	-	-	-	—	—	-
Off-Roa d Equipm ent	0.05	0.04	0.40	0.44	< 0.005	0.02	_	0.02	0.02	_	0.02	_	65.8	65.8	< 0.005	< 0.005		66.0
Dust From Material Movemer		-	_	-		-	0.07	0.07	-	0.03	0.03	-	-	-	-	_		-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	—	—	_	_	_	_	—	—	—			-
Worker	0.06	0.05	0.05	0.84	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	199	199	< 0.005	0.01	0.75	202
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.01	< 0.005	0.13	0.06	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	105	105	0.01	0.02	0.22	111
Daily, Winter (Max)		_	_	_	_	_		_	_	_		_	_	_	_			_
Average Daily	_	_	_	_	_	_	_	_	-	_	_	_	-	_	_	_	_	_
Worker	0.01	0.01	0.01	0.10	0.00	0.00	0.03	0.03	^{0.0} 61-	0.01	0.01	_	25.8	25.8	< 0.005	< 0.005	0.04	26.1

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	14.1	14.1	< 0.005	< 0.005	0.01	14.9
Annual	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	-	_	_
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	4.27	4.27	< 0.005	< 0.005	0.01	4.33
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.34	2.34	< 0.005	< 0.005	< 0.005	2.46

3.7. Building Construction (2025) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location		ROG	NOx	СО	SO2	PM10E	PM10D	PM10T		PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	-	-	-	_	-	-	-	-	-	-	_	-	-	-	_	-	-	_
Daily, Summer (Max)	—	_	_	—	—	_	—	—	—	—	—	—	—	—	_	_	_	_
Off-Roa d Equipm ent	1.35	1.13	10.4	13.0	0.02	0.43		0.43	0.40	_	0.40		2,398	2,398	0.10	0.02		2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	_	_	—	—		—	_	_		—	—	_		_	—	_	—
Off-Roa d Equipm ent	1.35	1.13	10.4	13.0	0.02	0.43		0.43	0.40	_	0.40	—	2,398	2,398	0.10	0.02	—	2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_

Off-Roa d Equipm ent	0.50	0.42	3.88	4.85	0.01	0.16	_	0.16	0.15	_	0.15	-	892	892	0.04	0.01	_	895
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	-	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_
Off-Roa d Equipm ent	0.09	0.08	0.71	0.88	< 0.005	0.03	_	0.03	0.03	_	0.03	_	148	148	0.01	< 0.005	_	148
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	—	_	_	_	—	_	_	-	—	-	—	_	-	_
Daily, Summer (Max)	—	_	_	-	-	-	-	-	-	_	-	-	—	-	-	_	-	-
Worker	0.06	0.05	0.05	0.77	0.00	0.00	0.18	0.18	0.00	0.04	0.04	-	182	182	< 0.005	0.01	0.69	184
Vendor	0.01	< 0.005	0.13	0.07	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	-	130	130	0.01	0.02	0.35	135
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	_	_	-	-	_	-	-	—	-	_	-	-	-	-	_	_
Worker	0.05	0.05	0.05	0.66	0.00	0.00	0.18	0.18	0.00	0.04	0.04	-	173	173	< 0.005	0.01	0.02	175
Vendor	0.01	< 0.005	0.14	0.07	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	-	130	130	0.01	0.02	0.01	135
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	—	_	_	-	_	_	_	—	—	_	_	_	_	-
Worker	0.02	0.02	0.02	0.26	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	65.1	65.1	< 0.005	< 0.005	0.11	66.0
Vendor	< 0.005	< 0.005	0.05	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	48.2	48.2	< 0.005	0.01	0.06	50.3
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	-	_	_	_	—	_	_	_	_	—	-	_	_	-	_
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00 -63-	< 0.005	< 0.005	—	10.8	10.8	< 0.005	< 0.005	0.02	10.9

Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	7.97	7.97	< 0.005	< 0.005	0.01	8.32
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Building Construction (2026) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	-	—	-	-	-	-	-	—	_	_	-	—	_	_	_
Daily, Summer (Max)	-	-	_	-	_	-	_	-	_	_	_	_	-	-	-	-	-	-
Off-Roa d Equipm ent	1.28	1.07	9.85	13.0	0.02	0.38		0.38	0.35	_	0.35	_	2,397	2,397	0.10	0.02	_	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	-	-	—	-	-	-	—	—	_	_	_	_	_	_	_	—	—	_
Off-Roa d Equipm ent	1.28	1.07	9.85	13.0	0.02	0.38	-	0.38	0.35	-	0.35	_	2,397	2,397	0.10	0.02	_	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	—	—	-	-	—	_	—	-	_	_	_	-	-	—	-	-	-
Off-Roa d Equipm ent	0.61	0.51	4.72	6.22	0.01	0.18		0.18	0.17	—	0.17	_	1,149	1,149	0.05	0.01		1,153
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_				_	_	_	_	_	_	_	_	_	_	_	_	_

Off-Roa Equipmer	0.11 nt	0.09	0.86	1.13	< 0.005	0.03	-	0.03	0.03	-	0.03	-	190	190	0.01	< 0.005	-	191
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	-	-	—	—	—
Daily, Summer (Max)		—	_	_	—	—	—	_	_	_	—	—	—	_	_	_	—	_
Worker	0.05	0.05	0.04	0.72	0.00	0.00	0.18	0.18	0.00	0.04	0.04	—	178	178	< 0.005	0.01	0.62	181
Vendor	0.01	< 0.005	0.13	0.06	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	—	127	127	0.01	0.02	0.33	133
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		—	_	_	_	_	_	_	_	_	_	—	_	—	_	_	_	_
Worker	0.05	0.05	0.05	0.62	0.00	0.00	0.18	0.18	0.00	0.04	0.04	_	170	170	< 0.005	0.01	0.02	172
Vendor	0.01	< 0.005	0.13	0.07	< 0.005	< 0.005	0.03	0.04	< 0.005	0.01	0.01	—	127	127	0.01	0.02	0.01	133
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		_	_	-	_	_	_	_	_	_	_	-	_	_	-	_	_	_
Worker	0.02	0.02	0.02	0.31	0.00	0.00	0.08	0.08	0.00	0.02	0.02	—	82.4	82.4	< 0.005	< 0.005	0.13	83.5
Vendor	< 0.005	< 0.005	0.07	0.03	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	61.1	61.1	< 0.005	0.01	0.07	63.8
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	_	_	_	-	-	—	—	—	—	—	_	—	-	-	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.06	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	_	13.6	13.6	< 0.005	< 0.005	0.02	13.8
Vendor	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	10.1	10.1	< 0.005	< 0.005	0.01	10.6
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.11. Paving (2026) - Unmitigated

		· · ·		3 /	,	/		· · ·			/	/						
Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	65-	—	—	—	—	—	—	—	—	—
									40/40									

Daily, Summer (Max)				_	_	_	_	_	_		_	_	_	_	_		_	_
Off-Roa d Equipm ent	0.81	0.68	6.23	8.81	0.01	0.26		0.26	0.24		0.24		1,350	1,350	0.05	0.01		1,355
Paving	0.11	0.11	—	—	—	—	—	—	—	—	—	—	_	—	_	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	_	_	—	—	—	—	—	—	—	—	—	_	—	—	_
Off-Roa d Equipm ent	0.81	0.68	6.23	8.81	0.01	0.26		0.26	0.24		0.24		1,350	1,350	0.05	0.01		1,355
Paving	0.11	0.11	_	-	-	-	-	_	-	_	-	_	_	-	_	-	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-
Off-Roa d Equipm ent	0.05	0.04	0.41	0.58	< 0.005	0.02	_	0.02	0.02	_	0.02	_	88.8	88.8	< 0.005	< 0.005	_	89.1
Paving	0.01	0.01	—	-	-	—	-	_	—	-	—	_	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	-	_	-	_	-	_	_	-	_	_	-	-
Off-Roa d Equipm ent	0.01	0.01	0.07	0.11	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005		14.7	14.7	< 0.005	< 0.005	_	14.7
Paving	< 0.005	< 0.005	—	-	_	_	_	_	_	_	_	_	_	_	_	_	_	—

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	—	—	—	_	_	_	—	_	_	—	—	_	_	—	_	_
Worker	0.07	0.07	0.06	1.05	0.00	0.00	0.26	0.26	0.00	0.06	0.06	_	260	260	< 0.005	0.01	0.91	264
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.07	0.07	0.07	0.91	0.00	0.00	0.26	0.26	0.00	0.06	0.06	_	248	248	< 0.005	0.01	0.02	251
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	_	-	-	-	_	_	-	-	_	-	-	-	-	_	-	-	-
Worker	< 0.005	< 0.005	< 0.005	0.06	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	_	16.5	16.5	< 0.005	< 0.005	0.03	16.7
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.74	2.74	< 0.005	< 0.005	< 0.005	2.77
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.13. Architectural Coating (2026) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	—	_	_	—	_	_	_	_	_	_	_	_	_	_	_	—	_

Daily, Summer (Max)	_		_	_	_	_		_		_					_	_		_
Daily, Winter (Max)	—	_	_	_	_	—	—	—	—	—	—	—	—	—	—	—	—	_
Off-Roa d Equipm ent	0.15	0.12	0.86	1.13	< 0.005	0.02	_	0.02	0.02		0.02	_	134	134	0.01	< 0.005	_	134
Architect ural Coating s	19.8	19.8	-	-	-	-		-		-				_	_	-		-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	_	-	-	-	-	_	-	_	-	_	_	-	_	-	-	_	-
Off-Roa d Equipm ent	0.01	0.01	0.06	0.07	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005		8.78	8.78	< 0.005	< 0.005		8.81
Architect ural Coating s	1.30	1.30	-	-	-													_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005		< 0.005	< 0.005	_	< 0.005		1.45	1.45	< 0.005	< 0.005		1.46
Architect ural Coating s	0.24	0.24	_	_		_				_			_	_	_	_		_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-	_	_
Daily, Winter (Max)	—	—	—	—	_		—	—	—	_	—	_	_	_	_	—	—	—
Worker	0.01	0.01	0.01	0.12	0.00	0.00	0.04	0.04	0.00	0.01	0.01	—	33.9	33.9	< 0.005	< 0.005	< 0.005	34.3
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	_	_	-	-	—	_	-	_	_	—	—	—	_	—	_	—
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	2.26	2.26	< 0.005	< 0.005	< 0.005	2.29
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	_	_	_	—	_	_	_	_	—	—	_	—	—	_	—	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.37	0.37	< 0.005	< 0.005	< 0.005	0.38
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

- 4.1. Mobile Emissions by Land Use
- 4.1.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

		∟and Jse	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
--	--	-------------	-----	-----	-----	----	-----	-------	-------	-------	--------	--------	--------	------	-------	------	-----	-----	---	------

Daily, Summer (Max)		_	_	_	_			_	_	_		_	_	_	_	_	_	-
Single Family Housing	1.27	1.16	0.81	10.4	0.03	0.01	2.44	2.45	0.01	0.62	0.63	_	2,592	2,592	0.11	0.09	9.99	2,631
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.27	1.16	0.81	10.4	0.03	0.01	2.44	2.45	0.01	0.62	0.63	_	2,592	2,592	0.11	0.09	9.99	2,631
Daily, Winter (Max)		—	—	_	_	_	—	_	_	_	_	_	—	_	_	_	_	-
Single Family Housing	1.26	1.15	0.89	9.63	0.02	0.01	2.44	2.45	0.01	0.62	0.63	_	2,487	2,487	0.11	0.09	0.26	2,518
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.26	1.15	0.89	9.63	0.02	0.01	2.44	2.45	0.01	0.62	0.63	—	2,487	2,487	0.11	0.09	0.26	2,518
Annual	_	_	—	—	—	-	-	_	_	_	_	_	_	_	—	_	_	—
Single Family Housing	0.22	0.20	0.16	1.77	< 0.005	< 0.005	0.43	0.43	< 0.005	0.11	0.11	—	409	409	0.02	0.02	0.70	414
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.22	0.20	0.16	1.77	< 0.005	< 0.005	0.43	0.43	< 0.005	0.11	0.11	—	409	409	0.02	0.02	0.70	414

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Use																		

Daily, Summer (Max)															_			_
Single Family Housing	_				—			_	—		—	—	382	382	0.02	< 0.005		383
Parking Lot	_	—	—	—	—	_		—	-	—	_	—	57.0	57.0	< 0.005	< 0.005	—	57.2
Total	_	_	_	_	_	_	—	_	_	—	_	_	439	439	0.03	< 0.005	_	441
Daily, Winter (Max)					—			—	—	—	_	_	—	—	—	—	—	-
Single Family Housing			—		—			—	—	—	—	_	382	382	0.02	< 0.005	—	383
Parking Lot	—	_	_	_	_	_	—	—	-	—	—	-	57.0	57.0	< 0.005	< 0.005	_	57.2
Total	—	—	—	—	—	—	—	—	—	—	—	—	439	439	0.03	< 0.005	—	441
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Single Family Housing			_		—	_	_		—	—	_	_	63.2	63.2	< 0.005	< 0.005	_	63.5
Parking Lot		_	_	_	—	_	_	_	_	_	_	_	9.44	9.44	< 0.005	< 0.005	_	9.47
Total	_	_	_	_	_	_	_	_	_	_	_	_	72.7	72.7	< 0.005	< 0.005	_	72.9

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—		—		—	—	—		_					—			—

Single	0.04	0.02	0.37	0.16	< 0.005	0.03	_	0.03	0.03		0.03		467	467	0.04	< 0.005		468
Single Family Housing	0.04	0.02	0.37	0.10	< 0.005	0.03	_	0.03	0.03	_	0.03	_	407	407	0.04	< 0.005		400
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	—	0.00	-	0.00	0.00	0.00	0.00	_	0.00
Total	0.04	0.02	0.37	0.16	< 0.005	0.03	_	0.03	0.03	_	0.03	_	467	467	0.04	< 0.005	_	468
Daily, Winter (Max)		-	-	_	-	_	_	_	-	_	-	-	-	_	-	-	_	_
Single Family Housing	0.04	0.02	0.37	0.16	< 0.005	0.03	_	0.03	0.03	_	0.03	_	467	467	0.04	< 0.005	—	468
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	_	0.00
Total	0.04	0.02	0.37	0.16	< 0.005	0.03	_	0.03	0.03	_	0.03	_	467	467	0.04	< 0.005	_	468
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	0.01	< 0.005	0.07	0.03	< 0.005	0.01	_	0.01	0.01		0.01	_	77.3	77.3	0.01	< 0.005	_	77.5
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.01	< 0.005	0.07	0.03	< 0.005	0.01	_	0.01	0.01	—	0.01	—	77.3	77.3	0.01	< 0.005	-	77.5

4.3. Area Emissions by Source

4.3.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Source	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_		—	—	_			—			—	—		_		—		—
Hearths	0.07	0.04	0.63	0.27	< 0.005	0.05	_	0.05	0.05	_	0.05	0.00	800	800	0.02	< 0.005	_	801

Consum er Product	1.59	1.59	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_
Architect ural Coating s	0.13	0.13	_	_	_	_		_	_	—	_	_	_	_		_	_	_
Landsca pe Equipm ent	0.20	0.19	0.02	2.15	< 0.005	< 0.005		< 0.005	< 0.005	_	< 0.005	_	5.76	5.76	< 0.005	< 0.005	_	5.78
Total	2.00	1.95	0.65	2.42	< 0.005	0.05	—	0.05	0.05	—	0.05	0.00	806	806	0.02	< 0.005	—	807
Daily, Winter (Max)	_	_	_	_	_	—	—	_	_	_	_	_	_	—	_	—	—	_
Hearths	0.07	0.04	0.63	0.27	< 0.005	0.05	—	0.05	0.05	—	0.05	0.00	800	800	0.02	< 0.005	—	801
Consum er Product s	1.59	1.59		_	_	_	_		_	_	_		_	_		_	_	_
Architect ural Coating s	0.13	0.13	—	_	—	—		_	—	—	—	_	—	—		_		_
Total	1.79	1.76	0.63	0.27	< 0.005	0.05	—	0.05	0.05	—	0.05	0.00	800	800	0.02	< 0.005	—	801
Annual	—	_	—	-	—	—	—	—	—	—	-	—	_	-	—	—	_	-
Hearths	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	0.00	9.07	9.07	< 0.005	< 0.005	—	9.08
Consum er Product s	0.29	0.29		_														_
Architect ural Coating s	0.02	0.02		_														_

Landsca	0.03	0.02	< 0.005	0.27	< 0.005	< 0.005	_	< 0.005	< 0.005		< 0.005		0.65	0.65	< 0.005	< 0.005		0.66
pe Equipm																		
Total	0.34	0.34	0.01	0.27	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	0.00	9.73	9.73	< 0.005	< 0.005	_	9.74

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	1	PM2.5D			NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	-	-	-	-	-	—	-	-	-	-	_	-	-	-	-	-	-	-
Single Family Housing	—	_	_	-	-	_	_	_	_	_		2.73	16.3	19.0	0.28	0.01	_	28.1
Parking Lot	—	—	—	_		—	—	_	—	—	_	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	-	-	_	-	_	_	_	_	-	_	_	2.73	16.3	19.0	0.28	0.01	_	28.1
Daily, Winter (Max)	-	-	_	-	-	_	-	_	-	_	_	_	-	-	_	-	-	
Single Family Housing	—	-	-	-	-	_	_	_	_	_	_	2.73	16.3	19.0	0.28	0.01	-	28.1
Parking Lot	-	_	-	-	-	-	-	_	-	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	2.73	16.3	19.0	0.28	0.01	_	28.1
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Single Family Housing	—	_	_	_	_		_	_	_	_		0.45	2.70	3.15	0.05	< 0.005	_	4.65

28 / 42

Parking Lot	_		_	_	_				_			0.00	0.00	0.00	0.00	0.00	_	0.00
Total	—	_	—	-	—	_	_	_	_	_	_	0.45	2.70	3.15	0.05	< 0.005	_	4.65

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E			PM2.5E				NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	-	-	-	-	—	-	-	_	—	—	—	_	_	-	-	-	-
Single Family Housing		_	—	-	_	_	_	_	—	—	—	16.2	0.00	16.2	1.61	0.00	—	56.5
Parking Lot		—	_	_	-	—	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Total	—	_	—	—	—	—	_	_	_	_	_	16.2	0.00	16.2	1.61	0.00	_	56.5
Daily, Winter (Max)	—	-	-	-	-	_	-	-	-	-	-	-	-	_	_	-	-	-
Single Family Housing		-	-	-		_	-	-	-			16.2	0.00	16.2	1.61	0.00	-	56.5
Parking Lot	_	_	—	-	-	_	-	_	-	—	-	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	-	—	—	_	_	_	_	_	16.2	0.00	16.2	1.61	0.00	_	56.5
Annual	—	-	—	-	—	—	_	_	-	-	-	_	—	-	-	-	-	_
Single Family Housing			_					_		—	—	2.67	0.00	2.67	0.27	0.00		9.36
Parking Lot		_	-	-	_	_	-	_	 -75-	_	_	0.00	0.00	0.00	0.00	0.00	-	0.00

	Total	_	_	_	_	_	_	_	_	_	_	_	2.67	0.00	2.67	0.27	0.00	_	9.36
--	-------	---	---	---	---	---	---	---	---	---	---	---	------	------	------	------	------	---	------

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

				adany, tor						,,								
Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	_	—	-	_	_	_	—	—	—	—	—	_	—	_	—	—	_
Single Family Housing		-	_	_		-	—	—	—	—	—	—	—	—	—	_	0.53	0.53
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0.53	0.53
Daily, Winter (Max)		_	_	_		_	—	—	—	—	—	—	—	—	—	_	—	
Single Family Housing		-	_	_	—	_	—	—	—	—	—	—	—	—	—	_	0.53	0.53
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0.53	0.53
Annual	—	—	—	-	—	—	_	—	—	—	—	—	—	—	—	—	—	-
Single Family Housing		_	_	_		_		—	—	—		—	_				0.09	0.09
Total	_	—	—	-	_	_	_	—	-	—	—	_	_	—	_	_	0.09	0.09

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

-76-

30 / 42

Equipm ent	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	—	—	—	—	—		—	—	—		—	—	—	—	—	—	—
Total	—	—	_	—	_	—	_	_	—	_	_	—	—	-	—	—	—	_
Daily, Winter (Max)		—		—	—					—				—	—			
Total	_	—	_	—	—	—	_	—	—	—	_	—	_	—	—	—	—	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipm ent Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
Total	—	—	—	—	—	—	_	_	—	_	_	—	—	—	—	—	—	_
Daily, Winter (Max)		—		—			—	—	—	—	_	_		_			—	—
Total	_	—	_	—	_	_	—	—	—	—	_	—	_	_	_	_	_	_
Annual	_	—		_	_	_	_	—	_	_		_	_	_	_	_	_	_
Total	_	_		_	_	_	—	_	_	—	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Equipm ent Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	—		—	—	—		—	—	—	—		—	—		—		—	—
Total	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)				_			—	—	_	—		_	_				—	—
Total	—	_	_	—	_	—	—	—	—	—	_	—	—	—	_	—	—	—
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	—	_	_	—	_	_	—	_	_	_	—	_	—	_

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetati on	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	_		—	—		_	—	_	_			—				_	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—		—			—	—	—	—		—	—				—	
Total	—	_	_	—	—	—	—	—	—	—	—	—	—	—	_		—	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_		_	_	_	-78-	_		_	_	_			_	

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

		```	,	<b>3</b> ·	,	,		· ·	,	<i>.</i>	/					-		
Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		—	—	_	—	—	—	—	—		—	—	—			—	—	—
Total	—	—	-	—	-	-	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)		_		_	—	—	—	—			—	—			—	—		—
Total	_	_	—	—	-	-	—	—	_	_	_	-	—	—	_	_	_	—
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

#### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

		· · ·			<i>.</i>	· · · ·		· ·			-	· /						
Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		—		—	_	—	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	—	—	—	—	—	—	_	—	—	—	—	_	—	—	—	_	—	—
Subtotal	_	_	_	-	_	—	_	_	_	_	_	-	_	_	_	_	_	_
Sequest ered	—	-	-	-	—	-	—	_	_	_	_	-	_	_	_	—	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d		_	_	-	_	_	_	_	_	_	_	_	_	_		_	_	_
Subtotal	_	_	_	_	_	_		_	_	_	_	_	_	_	_		_	
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

33 / 42

Daily, Winter (Max)												_						_
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—
Subtotal	—	_	_	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	—
Subtotal	—	_	_	—	—	_	—	—	—	—	—	_	—	—	—	—	—	—
Remove d										_		_					_	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	_	_	—	—	_	—	—	—	—	—	_	—	_	—	_	—	—
Avoided	_	_	_	—	—	_	_	_	—	—	_	_	_	_	_	_	_	—
Subtotal	_	_	_	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_
Sequest ered	—	—	—	_	—	_	—	_	_	-	—	-	—	_	—	_	—	—
Subtotal	_	_	_	—	_	_	_	_	—	—	_	_	—	_	_	_	_	_
Remove d	—	—	—	—	—	_	—	_	—	-	—	-	—	-	-	—	-	—
Subtotal	—	_	_	—	_	-	_	—	_	_	_	_	_	_	_	—	_	—
—	_	_	_	_	_	—	_	_	_	_	_	—	_	—	_	_	_	_

# 5. Activity Data

## 5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Demolition	Demolition	1/1/2025	3/4/2025	5.00	45.0	_
Site Preparation	Site Preparation	3/5/2025	4/16/2025	5.00	31.0	_
Grading	Grading	4/17/2025	6/24/2025 -80-	5.00	49.0	—

Building Construction	Building Construction	6/25/2025	9/2/2026	5.00	311	_
Paving	Paving	9/3/2026	10/6/2026	5.00	24.0	—
Architectural Coating	Architectural Coating	10/7/2026	11/9/2026	5.00	24.0	_

## 5.2. Off-Road Equipment

## 5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Demolition	Concrete/Industrial Saws	Diesel	Average	1.00	8.00	33.0	0.73
Demolition	Excavators	Diesel	Average	3.00	8.00	36.0	0.38
Demolition	Rubber Tired Dozers	Diesel	Average	2.00	8.00	367	0.40
Site Preparation	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Site Preparation	Tractors/Loaders/Back hoes	Diesel	Average	4.00	8.00	84.0	0.37
Grading	Excavators	Diesel	Average	1.00	8.00	36.0	0.38
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Grading	Tractors/Loaders/Back hoes	Diesel	Average	3.00	8.00	84.0	0.37
Building Construction	Cranes	Diesel	Average	1.00	7.00	367	0.29
Building Construction	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Back hoes	Diesel	Average	3.00	7.00	84.0	0.37
Building Construction	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Paving	Cement and Mortar Mixers	Diesel	Average	2.00	6.00	10.0	0.56
Paving	Pavers	Diesel	Average	1.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	-81-	6.00	89.0	0.36

Paving	Rollers	Diesel	Average	2.00	6.00	36.0	0.38
Paving	Tractors/Loaders/Back hoes	Diesel	Average	1.00	8.00	84.0	0.37
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48

## 5.3. Construction Vehicles

### 5.3.1. Unmitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	—	—	—	—
Demolition	Worker	15.0	18.5	LDA,LDT1,LDT2
Demolition	Vendor	—	10.2	HHDT,MHDT
Demolition	Hauling	31.0	20.0	HHDT
Demolition	Onsite truck	—	_	HHDT
Site Preparation	—	_	—	—
Site Preparation	Worker	17.5	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	_	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	_	_	_	_
Grading	Worker	15.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	_	10.2	HHDT,MHDT
Grading	Hauling	1.51	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	13.7	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	4.06	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	82-	_	HHDT

Paving	—		_	
Paving	Worker	20.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	_	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	—	HHDT
Architectural Coating	—	_	—	—
Architectural Coating	Worker	2.74	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	10.2	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	_	—	HHDT

### 5.4. Vehicles

#### 5.4.1. Construction Vehicle Control Strategies

Control Strategies Applied	PM10 Reduction	PM2.5 Reduction
Water unpaved roads twice daily	55%	55%
Limit vehicle speeds on unpaved roads to 25 mph	44%	44%
Sweep paved roads once per month	9%	9%

## 5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	150,053	50,018	0.00	0.00	2,678

## 5.6. Dust Mitigation

## 5.6.1. Construction Earthmoving Activities

#### 16th Street Residential Project Custom Report, 11/6/2024

Phase Name	Material Imported (Cubic Yards)	Material Exported (Cubic Yards)		Material Demolished (Ton of Debris)	Acres Paved (acres)
Demolition	0.00	0.00	0.00	5,573	_
Site Preparation	0.00	0.00	46.5	0.00	—
Grading	585	0.00	49.0	0.00	—
Paving	0.00	0.00	0.00	0.00	1.44

#### 5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	2	61%	61%
Water Demolished Area	2	36%	36%

## 5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
Single Family Housing	0.42	0%
Parking Lot	1.02	100%

### 5.8. Construction Electricity Consumption and Emissions Factors

#### kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2025	0.00	532	0.03	< 0.005
2026	0.00	532	0.03	< 0.005

### 5.9. Operational Mobile Sources

#### 5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday		VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
-84-								
38 / 42								

#### 16th Street Residential Project Custom Report, 11/6/2024

Single Family Housing	358	360	322	129,011	3,438	3,456	3,091	1,237,608
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

## 5.10. Operational Area Sources

#### 5.10.1. Hearths

#### 5.10.1.1. Unmitigated

Hearth Type	Unmitigated (number)
Single Family Housing	-
Wood Fireplaces	0
Gas Fireplaces	38
Propane Fireplaces	0
Electric Fireplaces	0
No Fireplaces	0
Conventional Wood Stoves	0
Catalytic Wood Stoves	0
Non-Catalytic Wood Stoves	0
Pellet Wood Stoves	0

### 5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)		Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
150052.5	50,018	0.00	0.00	2,678

## 5.10.3. Landscape Equipment

Season	Unit V		Value
Snow Days	day/yr	-85-	0.00
		39 / 42	

Summer Days day/yr 250	Summer Days	day/yr	250
------------------------	-------------	--------	-----

### 5.11. Operational Energy Consumption

#### 5.11.1. Unmitigated

#### Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Single Family Housing	262,016	532	0.0330	0.0040	1,456,743
Parking Lot	39,104	532	0.0330	0.0040	0.00

### 5.12. Operational Water and Wastewater Consumption

#### 5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Single Family Housing	1,425,975	277,968
Parking Lot	0.00	0.00

#### 5.13. Operational Waste Generation

#### 5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Single Family Housing	30.0	
Parking Lot	0.00	_

### 5.14. Operational Refrigeration and Air Conditioning Equipment

#### 5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP _8	Quantity (kg) 6-	Operations Leak Rate	Service Leak Rate	Times Serviced
			-0	0-			

Single Family Housing	Average room A/C & Other residential A/C and heat pumps	R-410A	2,088	< 0.005	2.50	2.50	10.0
Single Family Housing	Household refrigerators and/or freezers	R-134a	1,430	0.12	0.60	0.00	1.00

## 5.15. Operational Off-Road Equipment

### 5.15.1. Unmitigated

Equipment Type Fuel Type Engine	e Tier Number per Day	Hours Per Day	Horsepower	Load Factor
---------------------------------	-----------------------	---------------	------------	-------------

## 5.16. Stationary Sources

#### 5.16.1. Emergency Generators and Fire Pumps

Equipm	nent Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor

### 5.16.2. Process Boilers

Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
----------------	-----------	--------	--------------------------	------------------------------	------------------------------

### 5.17. User Defined

Equipment Type	Fuel Type
5.18. Vegetation	
5.18.1. Land Use Change	
5.18.1.1. Unmitigated	

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
--------------------------	----------------------	---------------	-------------

#### 5.18.1. Biomass Cover Type

#### 5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final	Acres
5.18.2. Sequestration			
5.18.2.1. Unmitigated			
Tree Type	Number	Electricity Saved (kWb/year)	Natural Gas Saved (htu/year)

# 8. User Changes to Default Data

Screen	Justification
Land Use	Project consists of 38 single family dwelling units and approximately 44,639 square feet of paved surfaces on a site with a gross area of 2.348 acres.
Construction: Construction Phases	Construction phases are adjusted to reflect the expected construction schedule.
Operations: Vehicle Data	Trip rates are adjusted based on the ITE Trip Generation Manual, 11th Edition.
Operations: Fleet Mix	Fleet mix is adjusted to reflect a total of 2% heavy trucks (GVWR > 10,000 lbs.).
Operations: Hearths	Per SCAQMD Rule 445, no wood burning devices shall be allowed.